Springer

74159

Автор(ы): 

Автор(ов): 

6

Параметры публикации

Тип публикации: 

Глава в книге

Название: 

Adaptive Authentication System Based on Unsupervised Learning for Web-Oriented Platforms

ISBN/ISSN: 

978-981-99-0835-6

DOI: 

10.1007/978-981-99-0835-6_36

Наименование источника: 

  • Lecture Notes on Data Engineering and Communications Technologies. Mobile Computing and Sustainable Informatics Proceedings of ICMCSI 2023

Город: 

  • Kathmandu

Издательство: 

  • Springer

Год издания: 

2023

Страницы: 

507–522
Аннотация
This paper considers the problem of internal threats caused by the actions that are performed by the employees who have legal access to the company’s data or by the intruders who compromise the employees’ accounts. Account compromise is considered a serious threat to information security, and it may lead to data theft or system disruption. The presented study contributes to the better understanding of detecting suspicious user behavior based on the data collected from the standard audit logs. A possible solution to this problem is a system for detecting the outliers in standard audit logs and extended user data, which may be a sign of abnormal (suspicious) user behavior. Data outlier detection is based on the log analysis with manually labeled data using the IsolationForest classifier with the adjusted parameters. The machine learning methods support heterogeneous data with different behavioral patterns for each user. Moreover, the increase of feature space using FingerPrintJS library provides higher accuracy of detecting abnormal user behavior.

Библиографическая ссылка: 

Исхаков А.Ю., Казанова Я.Я., Мамченко М.В., Мещеряков Р.В., Исхакова А.О., Хрипунов С.П. Adaptive Authentication System Based on Unsupervised Learning for Web-Oriented Platforms / Lecture Notes on Data Engineering and Communications Technologies. Mobile Computing and Sustainable Informatics Proceedings of ICMCSI 2023. Kathmandu: Springer, 2023. С. 507–522 .

74107

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Доклад

Название: 

Inventory Control with Returns and Controlled Markov Queueing Systems

Электронная публикация: 

Да

ISBN/ISSN: 

0302-9743

DOI: 

https://doi.org/10.1007/978-3-031-23207-7_28

Наименование конференции: 

  • 25th International Conference on Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN-2022)

Наименование источника: 

  • Lecture Note Computer Sciences (25th International Conference DCCN2022 Moscow)

Обозначение и номер тома: 

Vol. 13766

Город: 

  • Москва

Издательство: 

  • Springer

Год издания: 

2022

Страницы: 

361-370
Аннотация
A new model of inventory control with returns is considered, when it is possible for consumers to return (under certain conditions) the products they have purchased and a similar model of multi-channel controlled queueing system with switching of service channels. An optimal inventory control strategy in such a system turns out to be four-level. Then we investigate a model of a multilinear queueing system (QS) with channel switching under uncertainty and study the analogy of this model with the model of inventory control with returns.

Библиографическая ссылка: 

Гранин С.С., Лаптин В.А., Мандель А.С. Inventory Control with Returns and Controlled Markov Queueing Systems / Lecture Note Computer Sciences (25th International Conference DCCN2022 Moscow). М.: Springer, 2022. Vol. 13766. С. 361-370.

72995

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Coincidence Points of Parameterized Generalized Equations with Applications to Optimal Value Functions

ISBN/ISSN: 

0022-3239

DOI: 

10.1007/s10957-022-02140-w

Наименование источника: 

  • Journal of Optimization Theory and Applications

Обозначение и номер тома: 

196

Город: 

  • Luxembourg

Издательство: 

  • Springer

Год издания: 

2023

Страницы: 

177-198
Аннотация
В статье изучаются точки совпадения параметризованных многозначных отображений (мультифункций), которые обеспечивают расширенную основу для охвата нескольких важных тем вариационного анализа и оптимизации, включая существование решений параметризованных обобщенных уравнений, неявные функции и теоремы о неподвижной точке, оптимальные функции значений в параметрической оптимизации и т. д. Используя продвинутый аппарат вариационного анализа и обобщенного дифференцирования, который дает полную характеристику свойств корректности мультифункций, мы устанавливаем общую теорему, гарантирующую существование зависящих от параметра точечных отображений совпадения с явными оценками ошибки для параметризованные мультифункции между бесконечномерными пространствами. Полученный основной результат дает новую теорему о неявной функции и позволяет вывести эффективные условия полунепрерывности и непрерывности функций оптимального значения, связанных с задачами параметрической минимизации при ограничениях, определяемых параметризованными обобщенными уравнениями.

Библиографическая ссылка: 

Арутюнов А.В., Мордухович Б.Ш., Жуковский С.Е. Coincidence Points of Parameterized Generalized Equations with Applications to Optimal Value Functions // Journal of Optimization Theory and Applications. 2023. 196. С. 177-198.

72982

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Доклад

Название: 

Application of Convolutional Neural Networks for Image Detection and Recognition Based on a Self-written Generator

ISBN/ISSN: 

978-3-031-30647-1

DOI: 

10.1007/978-3-031-30648-8_3

Наименование конференции: 

  • 25th International Conference on Distributed Computer and Communication Networks: Control, Computation, Communications (DCCN-2022)

Наименование источника: 

  • Revised selected papers of 25th International Conference (DCCN2022)

Обозначение и номер тома: 

Volume 1748

Город: 

  • Cham

Издательство: 

  • Springer

Год издания: 

2023

Страницы: 

29-41
Аннотация
Object recognition is a branch of artificial vision and one of the pillars of machine vision. It consists in identifying the forms described in advance in a digital image and, in general, in a digital video stream. Although, as a rule, it is possible to perform recognition from video clips, the learning process is usually performed on images. In this paper, an algorithm for classifying and recognizing objects using convolutional neural networks is considered. The purpose of the work is to implement an algorithm for detecting and classifying various graphic objects fed from a webcam. The task is to first classify and recognize an object with high accuracy according to a given data set, and then demonstrate a way to generate images to increase the volume of the training data set by using a self-written generator. The classification and recognition algorithm used is invariant to transfer, shift and rotation. A significant novelty of this work is the creation of a self-written generator that allows using various types of augmentation (artificial increase in the volume of the training sample by modifying the training data) to form new groups of modified images each time.

Библиографическая ссылка: 

Муаль М. Н.Б., Козырев Д.В. Application of Convolutional Neural Networks for Image Detection and Recognition Based on a Self-written Generator / Revised selected papers of 25th International Conference (DCCN2022). Cham: Springer, 2023. Volume 1748. С. 29-41.

72970

Автор(ы): 

Автор(ов): 

4

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Analysis of functioning photonic switches in next-generation networks using queueing theory and simulation modeling

ISBN/ISSN: 

978-3-031-30648-8

DOI: 

10.1007/978-3-031-30648-8_28

Наименование источника: 

  • Communications in Computer and Information Science

Обозначение и номер тома: 

Vol.1748

Город: 

  • Springer, Cham

Издательство: 

  • Springer

Год издания: 

2023

Страницы: 

356–369
Аннотация
In this paper authors propose the approach for investigation of photonic switches performance metrics in modern all-optical networks. The approach includes photonic switches analytical and simulation modeling. The analytical model of the 4 × 4-photonic switch is based on the M/M/1/4 queuing model using so-called probability translation matrix method that allows to investigate functioning of the system in transient mode. The analytical expressions of such performance metrics as a loss probability, a buffer size and a transient time are obtained. A comparison of analytical and simulation modeling results was carried out. The analysis show that the steady-state loss probability obtained in results of analytical modeling is greater than the analogous parameter obtained in results of simulation modelling by 8%. The study of simulation models of 4×4 and 16 × 16-photonic switches show that the buffer size of these systems does not exceed one packet. Analysis of the 16×16-photonic switch buffer show that the buffer size of the first cascade is four times larger than the buffer of the second cascade. The results of the investigation show that the proposed type of photonic switches can be used in the high-performance alloptical network designed to transmit information from the ground module to tethered high-altitude unmanned module and vice versa.

Библиографическая ссылка: 

Барабанова Е.А., Вытовтов К.А., Вишневский В.М., Хафизов И.Н. Analysis of functioning photonic switches in next-generation networks using queueing theory and simulation modeling // Communications in Computer and Information Science. 2023. Vol.1748. С. 356–369.

72902

Автор(ы): 

Автор(ов): 

7

Параметры публикации

Тип публикации: 

Доклад

Название: 

Inverse Kinematics for Steerable Concentric Continuum Robots

DOI: 

10.1007/978-981-13-9267-2_8

Наименование конференции: 

  • 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”

Наименование источника: 

  • Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”

Город: 

  • Курск

Издательство: 

  • Springer

Год издания: 

2019

Страницы: 

89-100
Аннотация
Steerable concentric continuum robots are robots with a flexible structure that are able to bend at any point. Such robots consist of tubes inserted inside each other. The shape and length of the robot can be varied by controlling relative translations, rotations and bending angles of the tubes. This feature allows them to operate in confined working areas such as human heart, lungs, nuclear reactors and so on. However, existing solutions to the inverse kinematics for these robots have the following problems: high computational cost, singularity problems, complex matrix calculations, inability to control a robot tip orientation or requirement to go through the configuration parameters. This paper presents a modification of the Forward And Backward Reaching Inverse Kinematics (FABRIK) algorithm for multi-section continuum robots. Particularly, we applied the proposed modification of the FABRIK algorithm to the steerable concentric continuum robots.

Библиографическая ссылка: 

Колпащиков Д.Ю., Данилов В.В., Лаптев В.В., Скирневский И.П., Манаков Р., Гергет О.М., Мещеряков Р.В. Inverse Kinematics for Steerable Concentric Continuum Robots / Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”. Курск: Springer, 2019. С. 89-100 .

72849

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Глава в книге

Название: 

Robotics in Healthcare

ISBN/ISSN: 

978-3-030-83620-7 / 1868-4394

DOI: 

10.1007/978-3-030-83620-7_12

Наименование источника: 

  • Handbook of Artificial Intelligence in Healthcare

Город: 

  • Берлин

Издательство: 

  • Springer

Год издания: 

2022

Страницы: 

281-306
Аннотация
A robot is a programmed actuated mechanism with a degree of autonomy. Medical robots came a long way since first prototypes based on industrial robots in the 1960s-70 s to become modern complex systems that assist surgeons, patients, and nurses. Over time, robots proved their usefulness and evolved for the ability to operate in confined spaces inside human bodies, help people recover the functions of injured limbs, or provide support to physically and cognitively impaired persons. This chapter provides an overview along with the challenges of current robotics in healthcare.

Библиографическая ссылка: 

Колпащиков Д.Ю., Гергет О.М., Мещеряков Р.В. Robotics in Healthcare / Handbook of Artificial Intelligence in Healthcare. Берлин: Springer, 2022. С. 281-306.

72820

Автор(ы): 

Автор(ов): 

8

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Brain Tractography in Diabetes Mellitus and Cognitive Impairments

ISBN/ISSN: 

0097-0549

DOI: 

10.1007/s11055-021-01126-x

Наименование источника: 

  • Neuroscience and Behavioral Physiology

Обозначение и номер тома: 

Т. 51, №6

Город: 

  • Москва

Издательство: 

  • Springer

Год издания: 

2021

Страницы: 

716-719
Аннотация
Objective. To assess the characteristics of the conducting pathways in the white matter in patients with types 1 and 2 diabetes mellitus (DM) with and without cognitive impairment. Materials and methods. The study involved 85 patients with type 1 diabetes mellitus and 135 with type 2 diabetes mellitus, divided into patients with normal cognitive functions and those with cognitive impairments. The groups were comparable in terms of age and disease duration. Screening for cognitive disorders was with the Montreal Cognitive Assessment (MocA). Brain MRI scans were performed using a 1.5-T instrument. Results. These studies identified a predominance of mild and moderate cognitive impairments in type 1 DM and moderate and severe in type 2 DM; impairments were apparent mainly as impairments to memory, attention, and visuospatial orientation. Between-group analysis of brain tractography studies did not identify any differences in the integrity of tracts in types 1 and 2 DM, though very significant risk factors for impaired functioning of the conducting pathways were seen: arterial hypertension (H = 6.602833, p = 0.0368), the severity of polyneuropathy (H = 15.30420, p = 0.0005), the extent of nephropathy (H = 9.993923, p = 0.0068), and the extent of retinopathy (H = 8.445891, p = 0.0376) in type 1 DM; age (H = 7.381742, p = 0.0607) in type 2 DM; the cholesterol level (H = 4.009380, p = 0.0452; H = 4.057357, p = 0.0440) in both types of DM. The corticospinal and commissural tracts were the most susceptible to damage. Conclusions. No statistically significant differences in the axial diffusion of brain tracts were seen in patients with and without cognitive impairments. However, we confirmed the most important risk factors for damage to white matter structures: arterial hypertension, complications of diabetes, cholesterol level, and age.

Библиографическая ссылка: 

Самойлова Ю.Г., Матвеева М.В., Тонких О.С., Кудлай Д.А., Олейник О.А., Фимушкина Н.Ю., Гергет О.М., Борисова А.А. Brain Tractography in Diabetes Mellitus and Cognitive Impairments // Neuroscience and Behavioral Physiology. 2021. Т. 51, №6. С. 716-719.

72819

Автор(ы): 

Автор(ов): 

5

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Analysis of Deep Neural Networks for Detection of Coronary Artery Stenosis

ISBN/ISSN: 

0361-7688

DOI: 

10.1134/S0361768821030038

Наименование источника: 

  • Programming and Computer Software

Обозначение и номер тома: 

Т. 47, №3

Город: 

  • Москва

Издательство: 

  • Springer

Год издания: 

2021

Страницы: 

153-160
Аннотация
This paper describes an approach based on machine learning technology that is of particular interest for the localization and characterization of both single focal stenoses and multivessel multifocal lesions. Due to the complexity of analyzing large amounts of data for the cardiac surgeon, we pay special attention to the analysis, training, and comparison of popular neural networks that classify and localize foci of stenosis on coronary angiography data. From the complete coronarography dataset collected at the Research Institute for Complex Issues of Cardiovascular Diseases, we retrospectively select data of 100 patients. For the automated analysis of the medical data, the paper considers in detail three models (SSD MobileNet V1, Faster-RCNN ResNet-50 V1, and Faster-RCNN NASNet), which differ in their architecture, complexity, and the number of weights. The models are compared in terms of their basic efficiency characteristics: accuracy, training time, and prediction time. The test results show that the training and prediction times are directly proportional to the complexity of the models. In this regard, Faster-RCNN NASNet exhibits the lowest prediction time (the average processing time for one image is 880 ms), while Faster-RCNN ResNet-50 V1 has the highest prediction accuracy. The latter model reaches the mean average precision (mAP) level of 0.92 on the validation dataset. On the other hand, SSD MobileNet V1 is the fastest model, capable of making predictions with a prediction rate of 23 fps.

Библиографическая ссылка: 

Данилов В.В., Гергет О.М., Клышников К.Ю., Frandi A.F., Овчаренко Е.А. Analysis of Deep Neural Networks for Detection of Coronary Artery Stenosis // Programming and Computer Software. 2021. Т. 47, №3. С. 153-160.

72751

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Глава в книге

Название: 

Generative models based on VAE and GAN for new medical data synthesis

ISBN/ISSN: 

978-3-030-63563-3

DOI: 

10.1007/978-3-030-63563-3_17

Наименование источника: 

  • Society 5.0: Cyberspace for Advanced Human-Centered Society

Город: 

  • Гейдельберг

Издательство: 

  • Springer

Год издания: 

2021

Страницы: 

217-226
Аннотация
The chapter deals with the construction of generative models using Variational Autoencoder (VAE) and Generative Adversarial Neural Networks to synthesize new medical data. VAE is a synthesis of two complete neural networks: an encoder E and a generator G, as well as the latent space connecting them and enabling them to carry out random transformation and interpolation. Generative Adversarial Nets (GAN) in their turn are built on the principle of interaction between a generative model (generator G) and a discriminating model (discriminator D). When creating generator G (both VAE and GAN), its architecture of a neural network based on convolutional layers, with the application of the new deep learning framework Tensorflow-addons is used. As E and D encoders, respectively, the models of transfer learning, problem domain-image feature vector are used in the work. The comparison between them is made in the chapter and the most optimal model for solving the proposed problem is selected. The chapter presents the results of the research obtained on the basis of VAE and GAN implementation.

Библиографическая ссылка: 

Лаптев Н.В., Гергет О.М., Маркова Н.А. Generative models based on VAE and GAN for new medical data synthesis / Society 5.0: Cyberspace for Advanced Human-Centered Society. Гейдельберг: Springer, 2021. С. 217-226.

Страницы