Springer

76152

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Глава в книге

Название: 

Smart Transport as an Enhancement of the Urban Infrastructure

ISBN/ISSN: 

978-3-031-05515-7

DOI: 

10.1007/978-3-031-05516-4

Наименование источника: 

  • Technologies for Smart Cities

Город: 

  • Амстердам

Издательство: 

  • Springer

Год издания: 

2023

Страницы: 

103-129
Аннотация
The concept of a Smart City is to use the existing resources in an optimal way to provide the greatest convenience to its residents. This requires close integration of all components, for example, street video surveillance, public services, intelligent transport systems and others, on the scale of a megalopolis. Every year, the world’s megacities are becoming more comfortable for residents due to the introduction of newest technologies. First, such technologies include intelligent control systems in the transportation field. The main goals of Smart Transportation are the efficient and coordinated movement of people, monitoring the location of objects, fast and reliable interaction of vehicles with each other, as well as guaranteeing road safety. This paper represents examples of artificial intelligence technologies and optimization methods applications to create such smart systems.

Библиографическая ссылка: 

Захарова Е.Н., Минашина И.К., Пащенко Ф.Ф. Smart Transport as an Enhancement of the Urban Infrastructure / Technologies for Smart Cities. Амстердам: Springer, 2023. С. 103-129.

76124

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Доклад

Название: 

Image Segmentation Algorithms Composition for Obtaining Accurate Masks of Tomato Leaf Instances

ISBN/ISSN: 

978-3-031-49435-2

DOI: 

10.1007/978-3-031-49435-2_13

Наименование конференции: 

  • 9th Russian Supercomputing Days, RuSCDays 2023, Moscow

Наименование источника: 

  • Lecture Notes in Computer Science

Обозначение и номер тома: 

14389

Город: 

  • Moscow

Издательство: 

  • Springer

Год издания: 

2024

Страницы: 

178–194
Аннотация
Large agro-industrial complexes are interested in deep automation of the yields control processes to reduce costs caused by errors or a shortage of qualified personnel. Existing approaches solve problems such as yield assessment or plant pathologies detection, but they cannot properly quantify the volume of plant biomass or the diseased area. One of the reasons for this limitation is the poor quality of masks of object instances formed in machine vision systems. This occurs because of Mask R-CNN architecture, which is usually used in the computer vision. In this paper, we propose an algorithms composition for obtaining accurate masks of objects in task of segmentation of tomato leaf instances in images collected in difficult conditions of industrial greenhouses. The use of Mask R-CNN combined with CascadePSP neural network algorithm increased the average IoU by 1.194% compared to “pure” Mask R-CNN on images with complex object-like background.

Библиографическая ссылка: 

Журавлев И.И., Макаренко А.В. Image Segmentation Algorithms Composition for Obtaining Accurate Masks of Tomato Leaf Instances / Lecture Notes in Computer Science. Moscow: Springer, 2024. 14389. С. 178–194.

76123

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Доклад

Название: 

Recognition of Medical Masks on People’s Faces in Difficult Decision-Making Conditions

ISBN/ISSN: 

978-3-031-49435-2

DOI: 

10.1007/978-3-031-49435-2_2

Наименование конференции: 

  • 9th Russian Supercomputing Days, RuSCDays 2023, Moscow

Наименование источника: 

  • Lecture Notes in Computer Science

Обозначение и номер тома: 

14389

Город: 

  • Moscow

Издательство: 

  • Springer

Год издания: 

2024

Страницы: 

282–298
Аннотация
The paper proposes and tested an approach to the video data formation processing pipeline that solves the problem of automating the control of the presence and correctness of wearing personal protective equipment by personnel in difficult conditions of filming by CCTV cameras. The proposed solution is based on neural network algorithms and is flexibly configured for specific conditions and tasks, including when generating operational alerts. The approach is demonstrated on the example of recognition of medical masks. The solution is based on: an automated markup system for training a detector based on AlphaPose, a YOLOX neural network detector, a ByteTrack tracking system, and a classifier based on a lightweight CNN, the input of which is minitracks of people’s faces, 8 frames each. The collected dataset consists of over 260,000 minitracks. Achieved the quality of classification $F_1=0.86$ to determine the presence and $F_1=0.79$ to determine the correct wearing of the mask.

Библиографическая ссылка: 

Милосердов О.А., Макаренко А.В. Recognition of Medical Masks on People’s Faces in Difficult Decision-Making Conditions / Lecture Notes in Computer Science. Moscow: Springer, 2024. 14389. С. 282–298.

76081

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Доклад

Название: 

Methods and Algorithms for Intelligent Video Analytics in the Context of Solving Problems of Precision Pig Farming

ISBN/ISSN: 

978-3-031-49435-2

DOI: 

10.1007/978-3-031-49435-2_16

Наименование конференции: 

  • 9th Russian Supercomputing Days, RuSCDays 2023, Moscow

Наименование источника: 

  • Lecture Notes in Computer Science

Обозначение и номер тома: 

vol 14389

Город: 

  • Moscow

Издательство: 

  • Springer

Год издания: 

2024

Страницы: 

223-238
Аннотация
The paper proposes an approach to developing a video data pipeline that addresses the basic tasks of precision pig farming. The pipeline performs both low-level tasks, such as data pre-processing, object detection, instance segmentation, tracking, object density estimation, etc., and high-level tasks, e.g. livestock counting, feeders and drinkers condition assessment, behavioral patterns analysis, estimation of livestock activity and weight, etc. The proposed solution is based on neural network algorithms and can be flexibly adjusted to specific conditions and tasks, including while sending emergency notifications. Furthermore, the system is architecturally capable of integrating additional sensor and input data. The approach is demonstrated by solving several problems in the fattening phase. The system has proven to have a number of competitive advantages, including stable operation in a high animal density environment.

Библиографическая ссылка: 

Галкин В.А., Макаренко А.В. Methods and Algorithms for Intelligent Video Analytics in the Context of Solving Problems of Precision Pig Farming / Lecture Notes in Computer Science. Moscow: Springer, 2024. vol 14389. С. 223-238.

75899

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Artificial intelligence, public control, and supply of a vital commodity like COVID-19 vaccine

ISBN/ISSN: 

0951-5666

DOI: 

10.1007/s00146-021-01293-y

Наименование источника: 

  • AI and Society

Обозначение и номер тома: 

Т. 38

Город: 

  • Лондон

Издательство: 

  • Springer

Год издания: 

2023

Страницы: 

2619–2628 https://doi.org/10.1007/s00146-021-01293-y
Аннотация
The article examines the problem of ensuring the political stability of a democratic social system with a shortage of a vital commodity (like vaccine against COVID-19). In such a system, members of society citizens assess the authorities. Thus, actions by the authorities to increase the supply of this commodity can contribute to citizens' approval and hence political stability. However, this supply is influenced by random factors, the actions of competitors, etc. Therefore, citizens do not have sufficient information about all the possibilities of supplying, and it is difficult for them to make the right decisions. Such citizen unawareness can be exploited by unscrupulous politicians to achieve personal targets. Therefore, it is neces¬sary to organize public control to motivate politicians to use all available opportunities in supplying. The goal of the paper is to build such a digital mechanism of public control of the politicians by citizens, which would best assess and stimulate the activities of the authorities to improve the supply of a vital commodity. In the age of artificial intelligence, such digital public control in the face of uncertainty can be based on digital machine learning. In addition, it is necessary to take into account and model the activities of politicians associated with the presence of their own targets that do not coincide with public ones. Such politicians can use the learning of citizens for their own targets. The objective of the article is to build an optimal digital mechanism of public control in a two-level model of a democratic social system—a digital society. At its top level, there is the Citizen, who gives an assessment for the Politico located at the lower level. In turn, the Politico can influ¬ence the supplying of a vital commodity. Political stability is guaranteed if the Citizen regularly approves of the Politico’s actions to increase this supply. However, the Politico may not use the opportunities available to him to offer a commodity to achieve a personal target. To avoid this, the Politico’s control mechanism is proposed. It includes the procedure for digital learning of the Citizen, as well as a procedure for assessing the Politico activity. Sufficient conditions have been found for the synthesis of such the Politico’s control mechanism, at which stochastic possibilities of increasing the supply of a vital commodity are used. The example of such the Politico’s control mechanism is considered on the case of supply of the COVID-19 vaccine in England.

Библиографическая ссылка: 

Цыганов В.В. Artificial intelligence, public control, and supply of a vital commodity like COVID-19 vaccine // AI and Society. 2023. Т. 38. С. 2619–2628 https://doi.org/10.1007/s00146-021-01293-y.

Публикация имеет версию на другом языке или вышла в другом издании, например, в электронной (или онлайн) версии журнала: 

Да

Связь с публикацией: 

75846

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Smoothing Procedure for Lipschitzian Equations and Continuity of Solutions

ISBN/ISSN: 

0022-3239

DOI: 

10.1007/s10957-023-02244-x

Наименование источника: 

  • Journal of Optimization Theory and Applications

Обозначение и номер тома: 

V. 199, Iss. 1

Город: 

  • Luxembourg

Издательство: 

  • Springer

Год издания: 

2023

Страницы: 

112-142
Аннотация
Статья посвящена вопросу существования непрерывных неявных функций для негладких уравнений. Уравнение f(x,p)=0 изучается с неизвестными x и параметром p. Мы предполагаем, что отображение, определяющее уравнение, является локально липшицевым относительно неизвестной переменной, параметр принадлежит топологическому пространству, а неизвестная переменная и значение отображения принадлежат конечномерным пространствам. В терминах обобщенного якобиана Кларка получены достаточные условия существования непрерывной неявной функции в окрестности заданного значения параметра и условия существования непрерывной неявной функции на заданном подмножестве пространства параметров. Ключевым инструментом этого исследования является сглаживание исходного уравнения и применение последних результатов о разрешимости гладких нелинейных уравнений и априорных оценках решений. Обсуждаются приложения для управления и оптимизации.

Библиографическая ссылка: 

Арутюнов А.В., Жуковский С.Е. Smoothing Procedure for Lipschitzian Equations and Continuity of Solutions // Journal of Optimization Theory and Applications. 2023. V. 199, Iss. 1. С. 112-142.

75843

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Пленарный доклад

Название: 

Optimizing a Feedback in the Form of Nested Saturators to Stabilize the Chain of Three Integrators

Электронная публикация: 

Да

ISBN/ISSN: 

0302-9743

DOI: 

10.1007/978-3-031-47859-8_10

Наименование конференции: 

  • 14th International Conference Optimization and Applications (OPTIMA-2023, Petrova, Montenegro)

Наименование источника: 

  • Proceedings of the 14th International Conference Optimization and Applications (OPTIMA-2023, Petrova, Montenegro)

Обозначение и номер тома: 

LNCS 14395

Город: 

  • Cham, Switzerland

Издательство: 

  • Springer

Год издания: 

2023

Страницы: 

129-142
Аннотация
The problem of stabilizing the chain of three integrators by a piecewise continuous constrained control is studied. A feedback law in the form of three nested saturators specified by six—three model and three design—parameters is proposed. Global stability of the closed-loop system is studied, and an optimization problem of determining the feedback coefficients ensuring the greatest convergence rate near the equilibrium while preserving global asymptotic stability is stated. It is shown that the loss of global stability results from arising hidden attractors, which come to existence when the convergence rate becomes greater than or equal to a critical value depending on the control resource. A numerical procedure for constructing hidden attractors is developed. The bifurcation value of the convergence rate, which is an exact upper bound of the parameter values ensuring global asymptotic stability of the closed-loop system, is determined numerically by solving an algebraic system of four equations.

Библиографическая ссылка: 

Пестерев А.В., Морозов Ю.В. Optimizing a Feedback in the Form of Nested Saturators to Stabilize the Chain of Three Integrators / Proceedings of the 14th International Conference Optimization and Applications (OPTIMA-2023, Petrova, Montenegro). Cham, Switzerland: Springer, 2023. LNCS 14395. С. 129-142.

75808

Автор(ы): 

Автор(ов): 

6

Параметры публикации

Тип публикации: 

Доклад

Название: 

Mathematical Model for Training a Neural Network Used to Predict Atmospheric Pollutants from Vehicles

ISBN/ISSN: 

978-3-031-22937-4

DOI: 

10.1007/978-3-031-22938-1_36

Наименование конференции: 

  • Artificial Intelligence in Models, Methods and Applications

Наименование источника: 

  • Studies in Systems, Decision and Control

Город: 

  • Cham, Switzerland

Издательство: 

  • Springer

Год издания: 

2023

Страницы: 

525-537
Аннотация
A mathematical model has been developed for training a neural network to predict the concentration of atmospheric pollutants from traffic jams that occur near socially significant objects. An explicit finite-difference scheme is proposed for the numerical solution of a partial differential equation approximating the change in concentration at control points. The stability of the proposed scheme is being studied. A software product for calculating the change in time of the concentration of nitric oxide at given points in the controlled area by the method of fractional steps has been developed. A computational experiment showed the possibility of using the developed software for training a recurrent neural network.

Библиографическая ссылка: 

Кушникова Е.В., Петров В.В., Резчиков А.Ф., Кушелева Е.В., Богомолов А.С., Дранко О.И. Mathematical Model for Training a Neural Network Used to Predict Atmospheric Pollutants from Vehicles / Studies in Systems, Decision and Control. Cham, Switzerland: Springer, 2023. С. 525-537.

75807

Автор(ы): 

Автор(ов): 

5

Параметры публикации

Тип публикации: 

Доклад

Название: 

Rule-Based Model for Describing the Processes of Rise and Transfer of Anthropogenic Emissions in the Atmosphere

ISBN/ISSN: 

978-3-031-22937-4

DOI: 

10.1007/978-3-031-22938-1_37

Наименование конференции: 

  • International conference "Artificial Intelligence in Models, Methods and Applications" (AIES2022)

Наименование источника: 

  • Proceedings AIES2022 of the Studies in Systems, Decision and Control

Обозначение и номер тома: 

vol 457

Город: 

  • Cham, Switzerland

Издательство: 

  • Springer

Год издания: 

2023

Страницы: 

539–554
Аннотация
The article develops a rule-based model that reduces the time complexity of algorithms for describing the processes of rise and transfer of anthropogenic emissions in the atmosphere. A general view of the rule-based model has been developed, 7 rule-based models have been built, covering the most common types of transport of atmospheric emissions from industrial enterprises and vehicles. The reliability of the developed software was confirmed with computational experiments, the results of which are presented in the form of graphs. It is indicated that the developed rule-based models can be used in modifying the software of systems for monitoring and managing anthropogenic atmospheric emissions.

Библиографическая ссылка: 

Кушникова Е.В., Петров В.В., Богомолов А.С., Резчиков А.Ф., Степановская И.А. Rule-Based Model for Describing the Processes of Rise and Transfer of Anthropogenic Emissions in the Atmosphere / Proceedings AIES2022 of the Studies in Systems, Decision and Control. Cham, Switzerland: Springer, 2023. vol 457. С. 539–554.

75728

Автор(ы): 

Автор(ов): 

4

Параметры публикации

Тип публикации: 

Доклад

Название: 

Human Identification by Dynamics of Changes in Brain Frequencies Using Artificial Neural Networks

Наименование конференции: 

  • International Conference on Speech and Computer (SPECOM 2023)

Наименование источника: 

  • Proceedings of the International Conference on Speech and Computer (SPECOM 2023)

Обозначение и номер тома: 

1

Город: 

  • Москва

Издательство: 

  • Springer

Год издания: 

2023

Страницы: 

271–284
Аннотация
The article considers the problem of improving the methods of human identification using biometric features, in particular, the signals of an electroencephalogram. The authors present the results of scientific research into human identification by dynamics of frequency changes of the brain using the known architecture of artificial neural networks: AlexNet and Mobile Net 2. The basic hypothesis is formulated that the waves registered by sensors from head leads are unique for each person. The authors describe the preparation of experimental data on the basis of electroencephalogram signals received as a result of experiments on the formation of steady-state visual evoked potentials in a group of people with the subsequent creation of an applied database. The achievability of the set task was based on assessments of the relevance and representativeness of the obtained data. Frequency-time characteristics were taken as training datasets. Using deep machine learning technology, two classification models are obtained that allow identifying the identity of a person with a probability of 70%. The evaluation of the adequacy of the obtained classification models is carried out with PCA and t-SNE algorithms; the efficiency of their work is evaluated. The results of deep machine learning and machine classification tasks were confirmed by assessments of the adequacy of the obtained models. As a result, the authors confirm the main hypothesis.

Библиографическая ссылка: 

Вольф Д.А., Туровский Я.А., Мещеряков Р.В., Исхакова А.О. Human Identification by Dynamics of Changes in Brain Frequencies Using Artificial Neural Networks / Proceedings of the International Conference on Speech and Computer (SPECOM 2023). М.: Springer, 2023. 1. С. 271–284.

Страницы