Springer

67187

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Attraction Domains in the Control Problem of a Wheeled Robot Following a Curvilinear Path over an Uneven Surface

Электронная публикация: 

Да

ISBN/ISSN: 

ISBN 978-3-030-91058-7

DOI: 

DOI:10.1007/978-3-030-91059-4

Наименование источника: 

  • Lecture Notes in Computer Science

Обозначение и номер тома: 

LNCS 13078

Город: 

  • Cham, Switzerland

Издательство: 

  • Springer

Год издания: 

2021

Страницы: 

176-190
Аннотация
Рассмотрена задача управления движением колесного робота. Предполагается, что робот движется без бокового проскальзывания по произвольной достаточно гладкой трехмерной поверхности. Целевой путь робота определяется кривой с ограниченной кривизной на заданной поверхности. Предполагается, что задние колеса движутся, в то время как передние колеса отвечают за вращение платформы робота. На основе подхода линеаризации с обратной связью синтезирован закон управления. Целью статьи является построение оценки инвариантной области притяжения в пространстве «поперечное отклонение - угловое отклонение» с учетом ограничений на максимальный угол поворота. Эта проблема привлекла большое внимание в связи с применением точного земледелия. Цель управления - привести указанную целевую точку, взятую за середину задней оси, на целевой путь и стабилизировать ее движение. Система представлена ​​в так называемой форме Лурье и вложена в класс систем с нелинейностями, ограниченными секторным условием. Предлагается метод оценки области притяжения в пространстве состояний системы. Условие отрицательности производной функции Ляпунова по динамике системы в секторных условиях сформулировано в терминах разрешимости линейного матричного неравенства. Предполагается, что функция Ляпунова является квадратичной формой. Приведены примеры.

Библиографическая ссылка: 

Генералов А.А., Рапопорт Л.Б., Шавин М.Ю. Attraction Domains in the Control Problem of a Wheeled Robot Following a Curvilinear Path over an Uneven Surface // Lecture Notes in Computer Science. 2021. LNCS 13078. С. 176-190.

67179

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Пленарный доклад

Название: 

Adapting, learning, and control the supply of a vital commodity such as COVID-19 vaccine

ISBN/ISSN: 

978-3-030-87033-1

DOI: 

10.1007/978-3-030-87034-8_2

Наименование конференции: 

  • Conference on Creativity in Intelligent Technologies and Data Science (CIT&DS 2021)

Наименование источника: 

  • Proceedings of the 4th International Conference on Creativity in Intelligent Technologies and Data Science (CIT&DS 2021)

Обозначение и номер тома: 

1448

Город: 

  • Cham

Издательство: 

  • Springer

Год издания: 

2021

Страницы: 

16-26
Аннотация
The article examines the problem of managing a democratic socio-economic system in the face of a shortage of a vital commodity (such as the COVID-19 vaccine). The citizens' approval of the actions of the authorities to increase the production and supply of this product contributes to political stability. The possibilities of increasing the supply of a vital commodity depend on random factors. In the face of such uncertainty, in the age of artificial intelligence, the management of a socio-economic system can be based on machine learning and adaptation. In this case, it is necessary to take into account the activity of the elements of the system associated with the presence of their own goals, which do not necessarily coincide with the goal of the system as a whole. These elements can influence adaptation and machine learning procedures to achieve their goals. The research is carried out on a three-level model of a democratic socio-economic system. At its top level is a member of society - a citizen who evaluates the politician who is at the middle level of the system. In turn, the politician can influence the increase in the supply of a vital commodity, including both its purchase on the market and production at a local plant belonging to the lower level of the system. Political stability is guaranteed if the citizen regularly approves the actions of the politician to increase the supply of vital goods. But the plant's management knows its own production potential better than the politician. Thus, this leadership can manipulate the volume of its own production in order to gain more support from the politician. A politician may also manipulate the opportunities available to him in order to achieve personal goals. To avoid manipulation of the supply of a vital product under conditions of uncertainty, a socio-economic management mechanism is proposed, including an economic and political mechanism. The economic mechanism includes a procedure for adaptive forecasting of the production of a vital commodity, as well as a procedure for supporting this production. The political mechanism includes a procedure for machine self-learning of a citizen, as well as a procedure for assessing the activity of a politician. Sufficient conditions for the synthesis of the optimal mechanism of socio-economic management are found, in which random opportunities to increase the supply of a vital commodity are fully used, including both purchases on the market and production at a local plant. An example of such a socio-economic mechanism is considered on the example of the supply of the COVID-19 vaccine to England.

Библиографическая ссылка: 

Цыганов В.В. Adapting, learning, and control the supply of a vital commodity such as COVID-19 vaccine / Proceedings of the 4th International Conference on Creativity in Intelligent Technologies and Data Science (CIT&DS 2021). Cham: Springer, 2021. 1448. С. 16-26.

67173

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Доклад

Название: 

Mechanisms for learning and production management of a vertical concern

ISBN/ISSN: 

978-3-030-77447-9

DOI: 

10.1007/978-3-030-77448-6_45

Наименование конференции: 

  • 10th Computer Science Online Conference, CSOC 2021

Наименование источника: 

  • Lecture Notes in Networks and Systems

Обозначение и номер тома: 

vol 228

Город: 

  • Cham

Издательство: 

  • Springer

Год издания: 

2021

Страницы: 

466-475
Аннотация
Vertical concern is a group of companies with the mills from independent industries under common management. According to the INDUSTRIE 4.0 concept, management of such concern can apply artificial intelligence, including machine learning. Also it is necessary to take into account the human factor. The article explores the problem of using organizational control theory and machine learning to increase production output from the mill operating in one of concern industry. Changes lead to stochastic fluctuations in production output of such mill and industry. The lower-level element of vertical concern hierarchy knows the potential of own production output better than the higher-level element. Therefore, such lower-level element can manipulate its output to get more inducements from the higher-level element as a result of machine learning. Such unwanted activity can result in decline in total production output of the concern. To avoid this activity, the mechanism for production output management is derived including two-level machine learning and inducements. Sufficient conditions are found for the synthesis of such a mechanism in which the stochastic possibilities of increasing of a production output in a concern are used. The implementation of such a mechanism is illustrated by the example of a locomotive refit management in concern Russian Railways.

Библиографическая ссылка: 

Цыганов В.В. Mechanisms for learning and production management of a vertical concern / Lecture Notes in Networks and Systems. Cham: Springer, 2021. vol 228. С. 466-475.

67166

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Artificial intelligence, public control, and supply of a vital commodity like COVID-19 vaccine

ISBN/ISSN: 

0951-5666

DOI: 

10.1007/s00146-021-01293-y

Наименование источника: 

  • AI & SOCIETY

Обозначение и номер тома: 

2021

Город: 

  • London

Издательство: 

  • Springer

Год издания: 

2021

Страницы: 

https://link.springer.com/article/10.1007%2Fs00146-021-01293-y
Аннотация
The article examines the problem of ensuring the political stability of a democratic social system with a shortage of a vital commodity (like vaccine against COVID-19). In such a system, members of society - citizens assess the authorities. Thus, actions by the authorities to increase the supply of this commodity can contribute to citizens' approval and hence political stability. But this supply is influenced by random factors, the actions of competitors, etc. Therefore, citizens do not have sufficient information about all the possibilities of supplying, and it is difficult for them to make the right decisions. Such citizen unawareness can be exploited by unscrupulous politicians to achieve personal targets. Therefore, it is necessary to organize public control in order to motivate politicians to use all available opportunities in supplying. The goal of the paper is to build such a digital mechanism of public control of the politicians by citizens, which would best assess and stimulate the activities of the authorities to improve the supply of a vital commodity. In the age of artificial intelligence, such digital public control in the face of uncertainty can be based on digital machine learning. In addition, it is necessary to take into account and model the activities of politicians associated with the presence of their own targets that do not coincide with public ones. Such politicians can use the learning of citizens for their own targets. The objective of the article is to build an optimal digital mechanism of public control in a two-level model of a democratic social system – a digital society. At its top level there is the Citizen, who gives an assessment for the Politico located at the lower level. In turn, the Politico can influence the supplying of a vital commodity. Political stability is guaranteed if the Citizen regularly approves of the Politico's actions to increase this supply. But the Politico may not use the opportunities available to him to offer a commodity to achieve a personal target. To avoid this, the Politico’s control mechanism is proposed. It includes the procedure for digital learning of the Citizen, as well as a procedure for assessing the Politico activity. Sufficient conditions have been found for the synthesis of such the Politico’s control mechanism, at which stochastic possibilities of increasing the supply of a vital commodity are used. The example of such the Politico’s control mechanism is considered on the case of supply of the COVID-19 vaccine in England.

Библиографическая ссылка: 

Цыганов В.В. Artificial intelligence, public control, and supply of a vital commodity like COVID-19 vaccine // AI & SOCIETY. 2021. 2021. С. https://link.springer.com/article/10.1007%2Fs00146-021-01293-y.

67139

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Глава в книге

Название: 

Methodology of Complex Activity

ISBN/ISSN: 

978-981-15-0719-9

DOI: 

10.1007/978-981-13-0370-8

Наименование источника: 

  • Handbook of Systems Sciences

Город: 

  • New York, USA

Издательство: 

  • Springer

Год издания: 

2021

Страницы: 

291-335
Аннотация
The methodology of complex activity (MCA) is a system of formal models that, from a systems science perspective, generalizes nontrivial human activity and the operation of enterprises and complex (sociotechnical) systems. Complex activity (CA) is defined as one with a nontrivial internal structure and with multiple and/or changing actors/players, methods, and roles of the subject matter of activity in its relevant context. A dialectically coupled pair – a complex activity and a sociotechnical system that is a complex player in activity – is the subject matter of MCA.

Библиографическая ссылка: 

Белов М.В., Новиков Д.А. Methodology of Complex Activity / Handbook of Systems Sciences. New York, USA: Springer, 2021. С. 291-335.

67090

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

On Comparative Evaluation of Effectiveness of Neural Network and Fuzzy Logic Based Adjusters of Speed Controller for Rolling Mill Drive

ISBN/ISSN: 

1860-949X

DOI: 

10.1007/978-3-030-01328-8_15

Наименование источника: 

  • Studies in Computational Intelligence

Обозначение и номер тома: 

Vol. 799

Город: 

  • Берлинед

Издательство: 

  • Springer

Год издания: 

2019

Страницы: 

144-150
Аннотация
The article deals with a problem of a speed control of a DC electric drive of a reverse rolling mill under the conditions of its mechanics parameters drift and influence of disturbances. The analysis of existing methods to solve it is made. As a result, two intelligent methods are chosen: the neural network (proposed by the authors) and the fuzzy logic based tuners of linear controllers, the efficiency of which are to be compared. The neural tuner consists of two neural networks calculating the controller parameters of the electric drive, and a rule base that determines at what moments and speed to train these networks. A general description of the fuzzy tuner is also provided. Experimental studies are made using a model of the electric drive of the rolling mill under the above mentioned conditions. The obtained results show that the neural tuner, contrary to the fuzzy one, keeps the speed overshoot within the required limits and also reduces the time of disturbance rejection by 30%.

Библиографическая ссылка: 

Глущенко А.И., Петров В.А. On Comparative Evaluation of Effectiveness of Neural Network and Fuzzy Logic Based Adjusters of Speed Controller for Rolling Mill Drive // Studies in Computational Intelligence. 2019. Vol. 799. С. 144-150.

67088

Автор(ы): 

Автор(ов): 

4

Параметры публикации

Тип публикации: 

Доклад

Название: 

On Speed Controller Neural Tuner Application to Compensate PMSM Mechanics Inertia Moment Drift

Электронная публикация: 

Да

ISBN/ISSN: 

03029743

DOI: 

10.1007/978-3-319-92537-0_83

Наименование конференции: 

  • 15th International Symposium on Neural Networks (ISNN 2018, Minsk)

Наименование источника: 

  • Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Обозначение и номер тома: 

Vol. 10878

Город: 

  • Минск

Издательство: 

  • Springer

Год издания: 

2018

Страницы: 

727-735
Аннотация
A problem of adaptive control methods application to a speed vector control system of a Permanent Magnet Synchronous Motor (PMSM) with time varying mechanical parameters is considered. Such methods analysis is made to select the most appropriate one for the problem under consideration. As a result, a neural tuner is chosen. A synchronous motor mathematical model is shown, and the vector based control system of the motor is described. The neural tuner structure and its operation principle are presented. It is applied to adjust the speed controller of the PMSM. Experiments are conducted using the mathematical model of a PMSM Siemens 1FK7103, in which the mechanical inertia moment value is changed gradually during the modeling process. The tuner application as an augmentation to the speed controller allows to keep the required transient quality during the experiment despite the drive nonstationarity in contrast to a P-controller with the constant parameter value. This results in avoidance of, firstly, the transient time increase when the inertia moment is higher than its nominal value and, secondly, the speed overshoot in vice versa case.

Библиографическая ссылка: 

Еременко Ю.И., Глущенко А.И., Петров В.А., Молодых А.В. On Speed Controller Neural Tuner Application to Compensate PMSM Mechanics Inertia Moment Drift / Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Минск: Springer, 2018. Vol. 10878. С. 727-735.

67085

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Method of Calculation of Upper Bound of Learning Rate for Neural Tuner to Control DC Drive

Электронная публикация: 

Да

ISBN/ISSN: 

1860-949X

DOI: 

10.1007/978-3-319-66604-4_16

Наименование источника: 

  • Studies in Computational Intelligence

Обозначение и номер тома: 

Vol. 736

Город: 

  • Берлин

Издательство: 

  • Springer

Год издания: 

2018

Страницы: 

104-109
Аннотация
A two-loop cascade control system of a DC drive is considered in this research. The task is to keep transients quality in both speed and armature current loops. It is solved by a usage of P- and PI-controller parameters neural tuner, which operates in real time and does not require a plant model. The tuner is trained online during its functioning in order to follow the plant parameters change, but usage of too high values of a learning rate may result in instability of the control system. So, the upper bound of the learning rate value calculation method is proposed. It is based on Lyapunov’s second method application to estimate the system sustainability. It is applied to implement adaptive control of a mathematical model of a two-high rolling mill. Obtained results show that the proposed method is reliable. The tuner allowed to reduce the plant energy consumption by 1–2% comparing to conventional P-controller.

Библиографическая ссылка: 

Глущенко А.И. Method of Calculation of Upper Bound of Learning Rate for Neural Tuner to Control DC Drive // Studies in Computational Intelligence. 2018. Vol. 736. С. 104-109.

67036

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Improving the control of the OEMK heating furnaces by using parameter-scheduled adaptive pi controllers

ISBN/ISSN: 

0026-0894

DOI: 

10.1007/s11015-019-00819-6

Наименование источника: 

  • METALLURGIST

Обозначение и номер тома: 

Vol. 63, No 3-4

Город: 

  • New York

Издательство: 

  • Springer

Год издания: 

2019

Страницы: 

257-263
Аннотация
The development of automation and microcontroller equipment allows software implementation and industrial application of adaptive and optimal control systems. The issue of tuning the PI controllers of the zones of a furnace for heating steel before rolling at the Oskol Electrometallurgical Plant is resolved. The tuning of the PI controllers is described, and the choice of an adaptive control system based on a switching table is justified. The adaptive system allows improving the quality of control and keeping the temperature within the required operating range.

Библиографическая ссылка: 

Фомин А.В., Глущенко А.И. Improving the control of the OEMK heating furnaces by using parameter-scheduled adaptive pi controllers // METALLURGIST. 2019. Vol. 63, No 3-4. С. 257-263.

67024

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Доклад

Название: 

Method of real time calculation of learning rate value to improve convergence of neural network training

ISBN/ISSN: 

0302-9743

DOI: 

10.1007/978-3-030-61401-0_10

Наименование конференции: 

  • 19th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2020

Наименование источника: 

  • Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Обозначение и номер тома: 

Vol. 12415

Город: 

  • Zakopane, Poland

Издательство: 

  • Springer

Год издания: 

2020

Страницы: 

103-113
Аннотация
The scope of this research is a problem of correct initialization and further correction of a neural network learning rate. It is one of the main hyperparameters, which helps to increase a convergence rate of a training process. There are known techniques of time-based decay, step decay and exponential decay, in which the learning rate is initialized manually and then corrected downwards proportionally to some value. In contrast, in this paper, it is proposed to focus on an excitation level of a regressor - an output amplitude of a previous network layer. The formulas, which are based on the recursive least squares method, are derived to calculate the learning rate for each network layer, and their convergence is proved. Using them, the initial learning rate can be chosen arbitrarily, and not only can such rate decrease, but also it is able to increase when the value of the regressor has become lower. Experiments are conducted for a task of image recognition using multilayer networks and the MNIST database. For networks of different structures, the proposed method allows reducing the number of training epochs significantly in comparison with the backpropagation method with a constant learning rate.

Библиографическая ссылка: 

Глущенко А.И., Петров В.А., Ласточкин К.А. Method of real time calculation of learning rate value to improve convergence of neural network training / Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Zakopane, Poland: Springer, 2020. Vol. 12415. С. 103-113.

Страницы