New York

82504

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Prior Distribution Selection for a Mixture of Experts

ISBN/ISSN: 

0965-5425

DOI: 

10.1134/S0965542521070071

Наименование источника: 

  • Computational Mathematics and Mathematical Physics

Обозначение и номер тома: 

Т. 61, № 7

Город: 

  • New York

Издательство: 

  • Pleiades Publishing Ltd

Год издания: 

2021

Страницы: 

1140-1152
Аннотация
The paper investigates a mixture of expert models. The mixture of experts is a combination of experts, local approximation model, and a gate function, which weighs these experts and forms their ensemble. In this work, each expert is a linear model. The gate function is a neural network with softmax on the last layer. The paper analyzes various prior distributions for each expert. The authors propose a method that takes into account the relationship between prior distributions of different experts. The EM algorithm optimises both parameters of the local models and parameters of the gate function. As an application problem, the paper solves a problem of shape recognition on images. Each expert fits one circle in an image and recovers its parameters: the coordinates of the center and the radius. The computational experiment uses synthetic and real data to test the proposed method. The real data is a human eye image from the iris detection problem.

Библиографическая ссылка: 

Грабовой А.В., Стрижов В.В. Prior Distribution Selection for a Mixture of Experts // Computational Mathematics and Mathematical Physics. 2021. Т. 61, № 7. С. 1140-1152.

82499

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Analysis of the Properties of Probabilistic Models in Expert-Augmented Learning Problems

ISBN/ISSN: 

0005-1179

DOI: 

10.1134/s00051179220100058

Наименование источника: 

  • Automation and Remote Control

Обозначение и номер тома: 

Т. 83, № 10

Город: 

  • New York

Издательство: 

  • Pleiades Publishing Ltd

Год издания: 

2022

Страницы: 

1527-1537
Аннотация
The paper deals with the construction of interpretable machine learning models. The approximation problem is solved for a set of shapes on a contour image. Assumptions that the shapes are second-order curves are introduced. When approximating the shapes, information about the type, location, and shape of curves as well as about the set of their possible transformations is used. Such information is called expert information, and the machine learning method based on expert information is called expert-augmented learning. It is assumed that the set of shapes is approximated by the set of local models. Each local model based on expert information approximates one shape on the contour image. To construct the models, it is proposed to map second-order curves into a feature space in which each local model is linear. Thus, second-order curves are approximated by a set of linear models. In a computational experiment, the problem of approximating an iris on a contour image is considered.

Библиографическая ссылка: 

Базарова А.И., Грабовой А.В., Стрижов В.В. Analysis of the Properties of Probabilistic Models in Expert-Augmented Learning Problems // Automation and Remote Control. 2022. Т. 83, № 10. С. 1527-1537.

82496

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Probabilistic Interpretation of the Distillation Problem

ISBN/ISSN: 

0005-1179

DOI: 

10.1134/S000511792201009X

Наименование источника: 

  • Automation and Remote Control

Обозначение и номер тома: 

Т. 83, № 1

Город: 

  • New York

Издательство: 

  • Pleiades Publishing Ltd

Год издания: 

2022

Страницы: 

123-137
Аннотация
The article deals with methods for reducing the complexity of approximating models.Probabilistic substantiation of distillation and privileged teaching methods is proposed. General conclusions are given for an arbitrary parametric function with a predetermined structure. A theoretical basis is demonstrated for the special cases of linear and logistic regression. The analysis of the considered models is carried out in a computational experiment on synthetic samples and real data. The FashionMNIST and Twitter Sentiment Analysis samples are considered as real data.

Библиографическая ссылка: 

Грабовой А.В., Стрижов В.В. Probabilistic Interpretation of the Distillation Problem // Automation and Remote Control. 2022. Т. 83, № 1. С. 123-137.

82494

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Cross-Lingual Plagiarism Detection: Two Are Better Than One

ISBN/ISSN: 

0361-7688

DOI: 

10.1134/s0361768823040138

Наименование источника: 

  • Programming and Computer Software

Обозначение и номер тома: 

Т. 49, № 4

Город: 

  • New York

Издательство: 

  • Pleiades Publishing Ltd

Год издания: 

2023

Страницы: 

346-354
Аннотация
The widespread availability of scientific documents in multiple languages, coupled with the development of automatic translation and editing tools, has created a demand for efficient methods that can detect plagiarism across different languages. In this paper, we present a novel cross-lingual plagiarism detection approach. The algorithm is based on the merger of two existing approaches that in turn achieve state-of-the-art (SOTA) or comparable to SOTA results on different benchmarks. The detailed analysis stages of existing approaches were sequentially merged levelling out the disadvantages of the approaches. The obtained algorithm significantly outperforms the ones it was merged of surpassing them by from 23 to 33% Plagdet Score, depending on different language pairs. The comparison between observed approaches was evaluated on a newly generated multilingual (English, Russian, Spanish, Armenian) test collection, where each suspicious document could contain plagiarised fragments from several languages. The merged method is applicable to various under-resourced languages which is shown on the example of the Armenian language.

Библиографическая ссылка: 

Аветисян К.И., Грицай Г.М., Грабовой А.В. Cross-Lingual Plagiarism Detection: Two Are Better Than One // Programming and Computer Software. 2023. Т. 49, № 4. С. 346-354.

82488

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Unraveling the Hessian: A Key to Smooth Convergence in Loss Function Landscapes

ISBN/ISSN: 

1064-5624

DOI: 

10.1134/S1064562424601987

Наименование источника: 

  • Doklady Mathematics

Обозначение и номер тома: 

Т. 110, №S1

Город: 

  • New York

Издательство: 

  • Pleiades Publishing Ltd

Год издания: 

2024

Страницы: 

S49-S61
Аннотация
The loss landscape of neural networks is a critical aspect of their training, and understanding its properties is essential for improving their performance. In this paper, we investigate how the loss surface changes when the sample size increases, a previously unexplored issue. We theoretically analyze the convergence of the loss landscape in a fully connected neural network and derive upper bounds for the difference in loss function values when adding a new object to the sample. Our empirical study confirms these results on various datasets, demonstrating the convergence of the loss function surface for image classification tasks. Our findings provide insights into the local geometry of neural loss landscapes and have implications for the development of sample size determination techniques.

Библиографическая ссылка: 

Киселев Н.С., Грабовой А.В. Unraveling the Hessian: A Key to Smooth Convergence in Loss Function Landscapes / Doklady Mathematics. New York: Pleiades Publishing Ltd, 2024. Т. 110, №S1. С. S49-S61.

82485

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Stack More LLM’s: Efficient Detection of Machine-Generated Texts via Perplexity Approximation

ISBN/ISSN: 

1064-5624

DOI: 

10.1134/s1064562424602075

Наименование источника: 

  • Doklady Mathematics

Обозначение и номер тома: 

Т. 110, № S1

Город: 

  • New York

Издательство: 

  • Pleiades Publishing Ltd

Год издания: 

2024

Страницы: 

S203-S211
Аннотация
The development of large language models (LLMs) is currently receiving a great amount of interest, but an update of text generation methods should entail a continuous update of methods for detecting machine-generated texts. Earlier, it has been highlighted that values of perplexity and log-probability are able to capture a measure of the difference between artificial and human-written texts. Using this observation, we define a new criterion based on these two values to judge whether a passage is generated from a given LLM. In this paper, we propose a novel efficient method that enables the detection of machine-generated fragments using an approximation of the LLM perplexity value based on pre-collected statistical language models. Approximation lends a hand in achieving high performance and quality metrics also on fragments from weights-closed LLMs. A large number of pre-collected statistical dictionaries results in an increased generalisation ability and the possibility to cover text sequences from the wild. Such approach is easy to update by only adding a new dictionary with latest model text outputs. The presented method has a high performance and achieves quality with an average of 94% recall in detecting generated fragments among texts from various open-source LLMs. In addition, the method is able to perform in milliseconds, which outperforms state-of-the-art models by a factor of thousands.

Библиографическая ссылка: 

Грицай Г.М., Хабутдинов И.А., Грабовой А.В. Stack More LLM’s: Efficient Detection of Machine-Generated Texts via Perplexity Approximation / Doklady Mathematics. New York: Pleiades Publishing Ltd, 2024. Т. 110, № S1. С. S203-S211.

82481

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Spectral Decompositions of Controllability Gramian and Its Inverse based on System Eigenvalues in Companion Form

Электронная публикация: 

Да

ISBN/ISSN: 

2331-8422

DOI: 

10.48550/arXiv.2512.10851

Наименование источника: 

  • arXiv.org

Обозначение и номер тома: 

arXiv:2512.10851 [math.OC]

Город: 

  • New York

Издательство: 

  • Cornell University

Год издания: 

2025

Страницы: 

https://doi.org/10.48550/arXiv.2512.10851
Аннотация
Controllability and observability Gramians, along with their inverses, are widely used to solve various problems in control theory. This paper proposes spectral decompositions of the controllability Gramian and its inverse based on system eigenvalues for a continuous LTI dynamical system in the controllability canonical (companion) form. The Gramian and its inverse are represented as sums of Hermitian matrices, each corresponding to individual system eigenvalues or their pairwise combinations. These decompositions are obtained for the solutions of both algebraic and differential Lyapunov and Riccati equations with arbitrary initial conditions, allowing for the estimation of system spectral properties over an arbitrary time interval and their prediction at future moments. The derived decompositions are also generalized to the case of multiple eigenvalues in the dynamics matrix spectrum, enabling a closed-form estimation of the effects of resonant interactions with the system's eigenmodes. The spectral components are interpreted as measurable quantities in the minimum energy control problem. Therefore, they are unambiguously defined and can quantitatively characterize the influence of individual eigenmodes and associated system devices on controllability, observability, and the asymptotic dynamics of perturbation energy. The additional information obtained from these decompositions can improve the accuracy of algorithms in solving various practical problems, such as stability analysis, minimum energy control, structural design, tuning regulators, optimal placement of actuators and sensors, network analysis, and model order reduction.

Библиографическая ссылка: 

Искаков А.Б., Ядыкин И.Б. Spectral Decompositions of Controllability Gramian and Its Inverse based on System Eigenvalues in Companion Form / arXiv.org. New York: Cornell University, 2025. arXiv:2512.10851 [math.OC]. С. https://doi.org/10.48550/arXiv.2512.10851.

82479

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Sample Size Determination: Likelihood Bootstrapping

ISBN/ISSN: 

0965-5425

DOI: 

10.1134/s0965542524702002

Наименование источника: 

  • Computational Mathematics and Mathematical Physics

Обозначение и номер тома: 

Т. 65, № 2

Город: 

  • New York

Издательство: 

  • Pleiades Publishing Ltd

Год издания: 

2025

Страницы: 

416-423
Аннотация
Determining an appropriate sample size is crucial for constructing efficient machine learning models. Existing techniques often lack rigorous theoretical justification or are tailored to specific statistical hypotheses about model parameters. This paper introduces two novel methods based on likelihood values from resampled subsets to address this challenge. We demonstrate the validity of one of these methods in a linear regression model. Computational experiments on both synthetic and real-world datasets show that the proposed functions converge as the sample size increases, highlighting the practical utility of our approach.

Библиографическая ссылка: 

Киселев Н.С., Грабовой А.В. Sample Size Determination: Likelihood Bootstrapping // Computational Mathematics and Mathematical Physics. 2025. Т. 65, № 2. С. 416-423.

82391

Автор(ы): 

Автор(ов): 

5

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

RuGECToR: Rule-Based Neural Network Model for Russian Language Grammatical Error Correction

ISBN/ISSN: 

0361-7688

DOI: 

10.1134/S0361768824700129

Наименование источника: 

  • Programming and computer software

Обозначение и номер тома: 

Т. 50, № 4

Город: 

  • New York

Издательство: 

  • Pleiades Publishing Ltd

Год издания: 

2024

Страницы: 

315-321
Аннотация
Grammatical error correction is one of the core natural language processing tasks. Presently, the open-source state-of-the-art sequence tagging for English is the GECToR model. For Russian, this problem does not have equally effective solutions due to the lack of annotated datasets, which motivated the current research. In this paper, we describe the process of creating a synthetic dataset and training the model on it. The GECToR architecture is adapted for the Russian language, and it is called RuGECToR. This architecture is chosen because, unlike the sequence-to-sequence approach, it is easy to interpret and does not require a lot of training data. The aim is to train the model in such a way that it generalizes the morphological properties of the language rather than adapts to a specific training sample. The presented model achieves the quality of 82.5 in the metric on synthetic data and 22.2 on the RULEC dataset, which was not used at the training stage.

Библиографическая ссылка: 

Хабутдинов И.А., Чащин А.В., Грабовой А.В., Кильдяков А.С., Чехович Ю.В. RuGECToR: Rule-Based Neural Network Model for Russian Language Grammatical Error Correction // Programming and computer software. 2024. Т. 50, № 4. С. 315-321.

Публикация имеет версию на другом языке или вышла в другом издании, например, в электронной (или онлайн) версии журнала: 

Да

Связь с публикацией: 

82373

Автор(ы): 

Автор(ов): 

7

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Text reuse detection in handwritten documents

ISBN/ISSN: 

1064-5624

DOI: 

10.1134/s106456242370120x

Наименование источника: 

  • Doklady Mathematics

Обозначение и номер тома: 

Т. 108, № S2

Город: 

  • New York

Издательство: 

  • Pleiades Publishing Ltd

Год издания: 

2023

Страницы: 

S424-S433
Аннотация
Plagiarism detection in scholar assignments becomes more and more relevant nowadays. Rapidly growing popularity of online education, active expansion of online educational platforms for secondary and high school education create demand for development of an automatic reuse detection system for handwritten assignments. The existing approaches to this problem are not usable for searching for potential sources of reuse on large collections, which significantly limits their applicability. Moreover, real-life data are likely to be low-quality photographs taken with mobile devices. We propose an approach that allows detecting text reuse in handwritten documents. Each document is a picture and the search is performed on a large collection of potential sources. The proposed method consists of three stages: handwritten text recognition, candidate search and precise source retrieval. We represent experimental results for the quality and latency estimation of our system. The recall reaches 83.3% in case of better quality pictures and 77.4% in case of pictures of lower quality. The average search time is 3.2 s per document on CPU. The results show that the created system is scalable and can be used in production, where fast reuse detection for hundreds of thousands of scholar assignments on large collection of potential reuse sources is needed. All the experiments were held on HWR200 public dataset.

Библиографическая ссылка: 

Грабовой А.В., Каприелова М.С., Кильдяков А.С., Потяшин И.О., Сейил Т.Б., Финогеев Е.Л., Чехович Ю.В. Text reuse detection in handwritten documents / Doklady Mathematics. New York: Pleiades Publishing Ltd, 2023. Т. 108, № S2. С. S424-S433.

Публикация имеет версию на другом языке или вышла в другом издании, например, в электронной (или онлайн) версии журнала: 

Да

Связь с публикацией: 

Страницы