82479

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Sample Size Determination: Likelihood Bootstrapping

ISBN/ISSN: 

0965-5425

DOI: 

10.1134/s0965542524702002

Наименование источника: 

  • Computational Mathematics and Mathematical Physics

Обозначение и номер тома: 

Т. 65, № 2

Город: 

  • New York

Издательство: 

  • Pleiades Publishing Ltd

Год издания: 

2025

Страницы: 

416-423
Аннотация
Determining an appropriate sample size is crucial for constructing efficient machine learning models. Existing techniques often lack rigorous theoretical justification or are tailored to specific statistical hypotheses about model parameters. This paper introduces two novel methods based on likelihood values from resampled subsets to address this challenge. We demonstrate the validity of one of these methods in a linear regression model. Computational experiments on both synthetic and real-world datasets show that the proposed functions converge as the sample size increases, highlighting the practical utility of our approach.

Библиографическая ссылка: 

Киселев Н.С., Грабовой А.В. Sample Size Determination: Likelihood Bootstrapping // Computational Mathematics and Mathematical Physics. 2025. Т. 65, № 2. С. 416-423.