78196

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Iterative Methods with Self-Learning for Solving Nonlinear Equations

ISBN/ISSN: 

0005-1179

DOI: 

10.1134/S0005117924050060

Наименование источника: 

  • AUTOMATION AND REMOTE CONTROL

Обозначение и номер тома: 

Vol. 85, № 5

Город: 

  • Moscow

Издательство: 

  • PLEIADES PUBLISHING Ltd.

Год издания: 

2024

Страницы: 

472-476
Аннотация
This paper is devoted to the problem of solving a system of nonlinear equations with an arbitrary but continuous vector function on the left-hand side. By assumption, the values of its components are the only a priori information available about this function. An approximate solution of the system is determined using some iterative method with parameters, and the qualitative properties of the method are assessed in terms of a quadratic residual functional. We propose a self-learning (reinforcement) procedure based on auxiliary Monte Carlo (MC) experiments, an exponential utility function, and a payoff function that implements Bellman’s optimality principle. A theorem on the strict monotonic decrease of the residual functional is proven.

Библиографическая ссылка: 

Попков Ю.С. Iterative Methods with Self-Learning for Solving Nonlinear Equations // AUTOMATION AND REMOTE CONTROL. 2024. Vol. 85, № 5. С. 472-476.