60261

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Elements of Randomized Forecasting and Its Application to Daily Electrical Load Prediction in a Regional Power System

ISBN/ISSN: 

0005-1179

DOI: 

10.1134/S0005117920070103

Наименование источника: 

  • AUTOMATION AND REMOTE CONTROL

Обозначение и номер тома: 

Vol. 81, № 7

Город: 

  • Moscow

Издательство: 

  • Pleiades Publishing, Ltd

Год издания: 

2020

Страницы: 

1286-1306
Аннотация
Abstract|A randomized forecasting method based on the generation of ensembles of entropy- optimal forecasting trajectories is developed. The latter are generated by randomized dynamic regression models containing random parameters, measurement noises, and a random input. The probability density functions of random parameters and measurement noises are estimated using real data within the randomized machine learning procedure. The ensembles of forecasting trajectories are generated by the sampling of the entropy-optimal probability distributions. This procedure is used for the randomized prediction of the daily electrical load of a regional power system. A stochastic oscillatory dynamic regression model is designed. One-, two-, and three-day forecasts of the electrical load are constructed, and their errors are analyzed.

Библиографическая ссылка: 

Попков Ю.С., Попков А.Ю., Дубнов Ю.А. Elements of Randomized Forecasting and Its Application to Daily Electrical Load Prediction in a Regional Power System // AUTOMATION AND REMOTE CONTROL. 2020. Vol. 81, № 7. С. 1286-1306.