78172

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Доклад

Название: 

Parameter Estimation-Based States Reconstruction of Uncertain Linear Systems with Overparameterization and Unknown Additive Perturbations

Электронная публикация: 

Да

ISBN/ISSN: 

979-835038265-5

DOI: 

10.23919/ACC60939.2024.10645055

Наименование конференции: 

  • American Control Conference

Наименование источника: 

  • Proceedings of the 2024 American Control Conference

Город: 

  • Toronto

Издательство: 

  • IEEE

Год издания: 

2024

Страницы: 

3458-3464
Аннотация
The problem of state reconstruction is considered for uncertain linear time-invariant systems with overparameterization, arbitrary state-space matrices and unknown additive perturbation described by an exosystem. A novel adaptive observer is proposed to solve it, which, unlike known solutions, simultaneously: (i) reconstructs the physical state of the original system rather than the virtual state of its observer canonical form, (ii) ensures exponential convergence of the reconstruction error to zero when the condition of finite excitation is satisfied, (iii) is applicable to systems, in which mentioned perturbation is generated by an exosystem with fully uncertain constant parameters. The proposed solution uses a recently published parametrization of uncertain linear systems with unknown additive perturbations, the dynamic regressor extension and mixing procedure, as well as a method of physical states reconstruction developed by the authors. Detailed analysis for stability and convergence has been provided along with simulation results to validate the theoretical analysis.

Библиографическая ссылка: 

Глущенко А.И., Ласточкин К.А. Parameter Estimation-Based States Reconstruction of Uncertain Linear Systems with Overparameterization and Unknown Additive Perturbations / Proceedings of the 2024 American Control Conference. Toronto: IEEE, 2024. С. 3458-3464.