77964

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Доклад

Название: 

Exact Asymptotic Estimation of Unknown Parameters of Perturbed LRE with Application to State Observation

Электронная публикация: 

Да

ISBN/ISSN: 

979-835039544-0

DOI: 

10.1109/MED61351.2024.10566237

Наименование конференции: 

  • 32nd Mediterranean Conference on Control and Automation (MED'2024, Chania - Crete, Greece)

Наименование источника: 

  • Proceedings of the 32th Mediterranean Conference on Control and Automation (MED'2024, Chania - Crete, Greece)

Город: 

  • Chania - Crete, Greece

Издательство: 

  • IEEE

Год издания: 

2024

Страницы: 

137-142
Аннотация
Most identification laws of unknown parameters of linear regression equations (LRE) ensure only boundedness of a parametric error in the presence of additive perturbations, which is almost always unacceptable for practical scenarios. In this paper, a new identification law is proposed to overcome this drawback and guarantee asymptotic convergence of the unknown parameters estimation error to zero in case the mentioned additive perturbation meets special averaging conditions. Such law is successfully applied to state reconstruction problem. Theoretical results are illustrated by numerical simulations.

Библиографическая ссылка: 

Глущенко А.И., Ласточкин К.А. Exact Asymptotic Estimation of Unknown Parameters of Perturbed LRE with Application to State Observation / Proceedings of the 32th Mediterranean Conference on Control and Automation (MED'2024, Chania - Crete, Greece). Chania - Crete, Greece: IEEE, 2024. С. 137-142.