76659

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Monotonous parameter estimation of one class of nonlinearly parameterized regressions without overparameterization

Электронная публикация: 

Да

ISBN/ISSN: 

1873-2836

DOI: 

10.1016/j.automatica.2024.111561

Наименование источника: 

  • Automatica

Обозначение и номер тома: 

Vol.163

Город: 

  • London

Издательство: 

  • Elsiever

Год издания: 

2024

Страницы: 

111561 (1-6)
Аннотация
An estimation law of unknown parameters vector ${\theta}$ is proposed for one class of nonlinearly parametrized regression equations $y\left( t \right) = \Omega \left( t \right)\Theta \left( \theta \right)$. We restrict our attention to parametrizations that are widely obtained in practical scenarios when polynomials in $\theta$ are used to form $\Theta \left( \theta \right)$. For them we introduce a new “linearizability” assumption that a mapping from overparametrized vector of parameters $\Theta \left( \theta \right)$ to original one $\theta$ exists in terms of standard algebraic functions. Under such assumption and necessary and sufficient identifiability condition, on the basis of dynamic regressor extension and mixing technique we propose a procedure to reduce the nonlinear regression equation to the linear parameterization without application of singularity causing operations and the need to identify the overparametrized parameters vector. As a result, an estimation law with exponential convergence rate is derived, which, unlike known solutions, ({\it i}) does not require a strict {\emph{P}}-monotonicity condition to be met and \emph{a priori} information about $\theta$ to be known, ({\it ii}) ensures elementwise monotonicity for the parameter error vector. The effectiveness of our approach is illustrated with both academic example and 2-DOF robot manipulator control problem.

Библиографическая ссылка: 

Глущенко А.И., Ласточкин К.А. Monotonous parameter estimation of one class of nonlinearly parameterized regressions without overparameterization // Automatica. 2024. Vol.163. С. 111561 (1-6).