75827

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Exponentially Stable Adaptive Control of MIMO Systems with Unknown Control Matrix

Электронная публикация: 

Да

ISBN/ISSN: 

2405-8963

DOI: 

10.1016/j.ifacol.2023.10.978

Наименование источника: 

  • IFAC-PapersOnLine

Обозначение и номер тома: 

Vol.56, No.2

Город: 

  • Yokohama

Издательство: 

  • Elsiever

Год издания: 

2023

Страницы: 

10315-10320
Аннотация
The scope of this research is a problem of direct model reference adaptive control of linear time-invariant multi-input multi-output (MIMO) plants without any a priori knowledge about system matrices. To handle it, a new method is proposed, which includes three main stages. Firstly, using the well-known DREM procedure, the plant parametrization is made to obtain the linear regressions, in which the plant matrices and state initial conditions are the unknown parameters. Secondly, such regressions are substituted into the known equations for the controller parameters calculation. Thirdly, the controller parameters are identified using the novel adaptive law with the exponential rate of convergence. To the best of the authors’ knowledge, such a method is the first one to provide the following features simultaneously: 1) it is applicable for the unknown MIMO systems (e.g. without any information about state or control allocation matrices, the sign of the latter, etc.); 2) it guarantees the exponential convergence of both the parameter and tracking errors under the mild requirement of the regressor finite excitation; 3) it ensures element-wise monotonicity of the transient curves of the control law parameters matrices. The results of the conducted experiments with the model of a rubber and ailerons control of a small passenger aircraft corroborate all theoretical results.

Библиографическая ссылка: 

Глущенко А.И., Ласточкин К.А. Exponentially Stable Adaptive Control of MIMO Systems with Unknown Control Matrix / IFAC-PapersOnLine. Yokohama: Elsiever, 2023. Vol.56, No.2. С. 10315-10320.