75050

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Доклад

Название: 

Comparison of Methods to Design Parametric Uncertainty Compensator for Adaptive Control System of Quadrotor Euler Angles

Электронная публикация: 

Да

ISBN/ISSN: 

979-8-3503-4555-1

DOI: 

10.1109/RusAutoCon58002.2023.10272879

Наименование конференции: 

  • 2023 International Russian Automation Conference (RusAutoCon)

Наименование источника: 

  • Proceedings of 2023 International Russian Automation Conference (RusAutoCon)

Город: 

  • Sochi

Издательство: 

  • IEEE

Год издания: 

2023

Страницы: 

865-870 https://ieeexplore.ieee.org/document/10272879
Аннотация
Using a mathematical model of a quadrotor, the Euler angle dynamics equations are analyzed to obtain a linear regression that describes the plant parametric uncertainty. Based on this representation, model reference adaptive control systems with both adjustable baseline controller and uncertainty compensator based on (i) a linear regression and (ii) a neural network are designed. Asymptotic stability of the augmented tracking error is proved for both systems. The results of numerical experiments demonstrate that the neural-network-based compensator, in contrast to the linear-regression-based one, copes with the matched uncertainty that is not included in the original description of the plant.

Библиографическая ссылка: 

Лавриненко Д.А., Глущенко А.И., Ласточкин К.А. Comparison of Methods to Design Parametric Uncertainty Compensator for Adaptive Control System of Quadrotor Euler Angles / Proceedings of 2023 International Russian Automation Conference (RusAutoCon). Sochi: IEEE, 2023. С. 865-870 https://ieeexplore.ieee.org/document/10272879.