Рассматривается процесс адаптации численной модели нестационарной теплопроводности, реализованной при помощи методов конечных разностей. Для классического представления данных моделей в большинстве приложений и задач уже доказана алгоритмическая устойчивость, но в данном случае рассматривается задача, связанная с параметрической адаптацией уравнения нестационарной теплопроводности к нагреваемому веществу, выполненной при помощи решения смежной вариационной задачи. Основа данного подхода предполагает замену теплофизических параметров рассматриваемого уравнения на свободно настраиваемые параметры и их коррекцию («обучение модели») методом стохастического градиента. Чтобы избежать попадания в области неустойчивости при «обучении», необходимы ограничения на введенные настраиваемые параметры. В данной работе такие ограничения получены на основании доказанных условий устойчивости классической конечно-разностной модели нестационарной теплопроводности. В результате численного эксперимента было установлено, что предлагаемые ограничения позволяют в среднем увеличить количество устойчивых начальных условий на 14%, увеличить количество попаданий в устойчивые траектории на 61%. Также было проведено аналитическое сравнение порядков роста алгоритмической сложности классической и модифицированной модели. В результате расчетов было установлено, что обе модели имеют порядок роста О(n4), что было подтверждено численным экспериментом.