71645

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Regression Filtration with Resetting to Provide Exponential Convergence of MRAC for Plants with Jump Change of Unknown Parameters

Электронная публикация: 

Да

ISBN/ISSN: 

00189286

DOI: 

10.1109/TAC.2022.3216966

Наименование источника: 

  • IEEE Transactions on Automatic Control

Город: 

  • New York

Издательство: 

  • IEEE

Год издания: 

2022

Страницы: 

1-8 https://ieeexplore.ieee.org/document/9928342
Аннотация
This paper proposes a new method to provide the exponential convergence of both the parameter and tracking errors of the composite adaptive control system without the persistent excitation (PE) requirement. Instead, the derived composite adaptive law ensures the above-mentioned properties under the strictly weaker finite excitation (FE) condition. Unlike known solutions, in addition to the PE requirement relaxation, it provides better transient response under jump change of the plant uncertainty parameters. To derive such an adaptive law, a novel scheme of uncertainty filtration with resetting is proposed, which provides the required properties of the control system. A rigorous proof of all mentioned properties of the developed adaptive law is presented. Such law is compared with the known composite ones, which also relax the PE requirement, using the wing-rock problem to conduct numerical experiments. The obtained results fully support the theoretical analysis and demonstrate the advantages of the proposed method.

Библиографическая ссылка: 

Глущенко А.И., Петров В.А., Ласточкин К.А. Regression Filtration with Resetting to Provide Exponential Convergence of MRAC for Plants with Jump Change of Unknown Parameters // IEEE Transactions on Automatic Control. 2022. С. 1-8 https://ieeexplore.ieee.org/document/9928342.