67013

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Robust method to provide exponential convergence of model parameters solving linear time‐invariant plant identification problem

Электронная публикация: 

Да

ISBN/ISSN: 

1099-1115

DOI: 

10.1002/acs.3238

Наименование источника: 

  • International Journal of Adaptive Control and Signal Processing

Обозначение и номер тома: 

Vol. 35, No 6

Город: 

  • New Jersey

Издательство: 

  • Wiley

Год издания: 

2021

Страницы: 

1120-1137 (1-18)
Аннотация
The scope of this research is a problem of parameters identification of a linear time-invariant plant, which (1) input signal is not frequency-rich, (2) is subjected to initial conditions and external disturbances. The memory regressor extension (MRE) scheme, in which a specially derived differential equation is used as a filter, is applied to solve the above-stated problem. Such a filter allows us to obtain a bounded regressor value, for which a condition of the initial excitation (IE) is met. Using the MRE scheme, the recursive least-squares method with the forgetting factor is used to derive an adaptation law. The following properties have been proved for the proposed approach. If the IE condition is met, then: (1) the parameter error of identification is bounded and converges to zero exponentially (if there are no external disturbances) or to a set (in the case of them) with an adjustable rate, (2) the parameters adaptation rate is a finite value. The above-mentioned properties are mathematically proved and demonstrated via simulation experiments.

Библиографическая ссылка: 

Глущенко А.И., Петров В.А., Ласточкин К.А. Robust method to provide exponential convergence of model parameters solving linear time‐invariant plant identification problem // International Journal of Adaptive Control and Signal Processing. 2021. Vol. 35, No 6. С. 1120-1137 (1-18).