60153

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Multivalued solutions of hyperbolic Monge-Ampère equations: solvability, integrability, approximation

DOI: 

10.1070/SM9171

Наименование источника: 

  • Sbornik: Mathematics

Обозначение и номер тома: 

Т. 211, № 3

Город: 

  • Москва

Издательство: 

  • Turpion Limited

Год издания: 

2020

Страницы: 

373-421
Аннотация
Solvability in the class of multivalued solutions is investigated for Cauchy problems for hyperbolic Monge-Ampère equations. A characteristic uniformization is constructed on definite solutions of this problem, using which the existence and uniqueness of a maximal solution is established. It is shown that the characteristics in the different families that lie on a maximal solution and converge to a definite boundary point have infinite lengths. In this way a theory of global solvability is developed for the Cauchy problem for hyperbolic Monge-Ampère equations, which is analogous to the corresponding theory for ordinary differential equations. Using the same methods, a stable explicit difference scheme for approximating multivalued solutions can be constructed and a number of problems which are important for applications can be integrated by quadratures.

Библиографическая ссылка: 

Туницкий Д.В. Multivalued solutions of hyperbolic Monge-Ampère equations: solvability, integrability, approximation // Sbornik: Mathematics. 2020. Т. 211, № 3. С. 373-421.