59066

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Bivariate Distributions of Maximum Remaining Service Times in Fork-Join Infinite-Server Queues

DOI: 

10.1134/S013434752001007X

Наименование источника: 

  • Problems of Information Transmission

Обозначение и номер тома: 

Vol. 56, № 1

Город: 

  • New York

Издательство: 

  • Pleiades Publishing, Ltd

Год издания: 

2020

Страницы: 

73-90
Аннотация
We study the maximum remaining service time in M(2)∣G2∣∞ fork -join queueing systems where an incoming task forks on arrival for service into two subtasks, each of them being served in one of two infinite-sever subsystems. The following cases for the arrival rate are considered: (1) time-independent, (2) given by a function of time, (3) given by a stochastic process. As examples of service time distributions, we consider exponential, hyperexponential, Pareto, and uniform distributions. In a number of cases we find copula functions and the Blomqvist coefficient. We prove asymptotic independence of maximum remaining service times under high load conditions.

Библиографическая ссылка: 

Горбунова А.В., Лебедев А.В. Bivariate Distributions of Maximum Remaining Service Times in Fork-Join Infinite-Server Queues // Problems of Information Transmission. 2020. Vol. 56, № 1. С. 73-90.

Публикация имеет версию на другом языке или вышла в другом издании, например, в электронной (или онлайн) версии журнала: 

Да

Связь с публикацией: