55110

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Entropy Dimension Reduction Method for Randomized Machine Learning Problems

DOI: 

10.1134/S0005117918110085

Наименование источника: 

  • Automation and Remote Control

Обозначение и номер тома: 

Vol. 79, No.1

Город: 

  • Moscow

Издательство: 

  • Pleiades Publishing, Ltd.

Год издания: 

2018

Страницы: 

2038-2051
Аннотация
The direct and inverse projections (DIP) method was proposed to reduce the feature space to the given dimensions oriented to the problems of randomized machine learning and based on the procedure of “direct” and “inverse” design. The “projector” matrices are determined by maximizing the relative entropy. It is suggested to estimate the information losses by the absolute error calculated with the use of the Kullback–Leibler function (SRC method). An example illustrating these methods was given.

Библиографическая ссылка: 

Попков Ю.С., Попков А.Ю., Дубнов Ю.А. Entropy Dimension Reduction Method for Randomized Machine Learning Problems // Automation and Remote Control. 2018. Vol. 79, No.1. С. 2038-2051.