We study the behavior of the soliton that encounters a barrier with dissipation while moving in a nondissipative medium. We use the Korteweg–de Vries–Burgers equation to model this situation. The modeling includes the case of a finite dissipative layer similar to a wave passing through air–glass–air and also a wave passing from a nondissipative layer into a dissipative layer (similar to light passing from air to water). The dissipation predictably reduces the soliton amplitude/velocity. Other effects also occur in the case of a finite barrier in the soliton path: after the wave leaves the dissipative barrier, it retains the soliton form, but a reflection wave arises as small and quasiharmonic oscillations (a breather). The breather propagates faster than the soliton passing through the barrier.