49415

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Reflection and Refraction of Solitons by the KdV–Burgers Equation in Nonhomogeneous Dissipative Media

ISBN/ISSN: 

0040-5779

DOI: 

10.1134/S0040577918100094

Наименование источника: 

  • Theoretical and Mathematical Physics

Обозначение и номер тома: 

Vo. 197, Iss. 1

Город: 

  • Moscow

Издательство: 

  • Springer Link

Год издания: 

2018

Страницы: 

1527–1533
Аннотация
We study the behavior of the soliton that encounters a barrier with dissipation while moving in a nondissipative medium. We use the Korteweg–de Vries–Burgers equation to model this situation. The modeling includes the case of a finite dissipative layer similar to a wave passing through air–glass–air and also a wave passing from a nondissipative layer into a dissipative layer (similar to light passing from air to water). The dissipation predictably reduces the soliton amplitude/velocity. Other effects also occur in the case of a finite barrier in the soliton path: after the wave leaves the dissipative barrier, it retains the soliton form, but a reflection wave arises as small and quasiharmonic oscillations (a breather). The breather propagates faster than the soliton passing through the barrier.

Библиографическая ссылка: 

Самохин А.В. Reflection and Refraction of Solitons by the KdV–Burgers Equation in Nonhomogeneous Dissipative Media // Theoretical and Mathematical Physics. 2018. Vo. 197, Iss. 1. С. 1527–1533.