47765

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Surrogates for the matrix l_0-quasinorm in sparse feedback design: Numerical study of the efficiency

ISBN/ISSN: 

1078-6236

DOI: 

https://doi.org/10.25728/assa.2018.18.2.604

Наименование источника: 

  • Advances in Systems Science and Applications

Обозначение и номер тома: 

vol 18, № 2

Город: 

  • Pennsylvania, U.S.A

Издательство: 

  • International Institute for General Systems Studies

Год издания: 

2018

Страницы: 

11-25
Аннотация
Some formulations of the optimal control problem require the resulting controller to be sparse; i.e., to contain zero elements in the gain matrix. On one hand, sparse feedback leads to the drop of performance as compared to the optimal control; on the other hand, it confers useful properties to the system. For instance, sparse controllers allow to design distributed systems with decentralized feedback. Some sparse formulations require the gain matrix of the controller to have a special sparse structure which is characterized by the presence of zero rows in the matrix. In this paper, various approximations to the number of nonzero rows of a matrix are considered and applied to sparse feedback design in optimal control problems for linear systems. Along with a popular approach based on using the matrix l_1-norm, more complex nonconvex surrogates are proposed and discussed, those surrogates being minimized via special numerical procedures. The efficiency of the approximations is compared via numerical experiments.

Библиографическая ссылка: 

Быков А.В., Щербаков П.С. Surrogates for the matrix l_0-quasinorm in sparse feedback design: Numerical study of the efficiency // Advances in Systems Science and Applications. 2018. vol 18, № 2. С. 11-25.

Публикация имеет версию на другом языке: 

Да

Связь с публикацией: