43668

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Quantizations of compact Lie group actions

DOI: 

doi.org/10.1016/j.geomphys.2014.01.015

Наименование источника: 

  • Journal of Geometry and Physics

Обозначение и номер тома: 

Vol. 80

Город: 

  • Las Vegas

Издательство: 

  • Elsevier B.V.

Год издания: 

2014

Страницы: 

26-36
Аннотация
In this paper we describe quantizations in the monoidal categories of unitary representations of compact connected Lie groups. For the n-dimensional torus T we show that the set Q(T ) of quantizations is isomorphic to the  n 2  -dimensional torus. For connected compact Lie groups G of rank n, we get the result that the set QE (G) of extendible quantizations of G-modules is isomorphic to the set of quantizations of its maximal torus T invariant under action by its Weyl group. For all these cases we give explicit formulae for quantizations and apply these to quantize Hilbert–Schmidt operators.

Библиографическая ссылка: 

Лычагин В.В., Huru H. L. Quantizations of compact Lie group actions // Journal of Geometry and Physics. 2014. Vol. 80. С. 26-36.