Vilnius University

47089

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Пленарный доклад

Название: 

Extremes of stochastic sequences with application to Web graphs

Наименование конференции: 

  • 12th International Vilnius Conference on Probability Theory and Mathematical Statistics and 2018 IMS Annual Meeting on Probability and Statistics

Наименование источника: 

  • Proceedings of the 12th International Vilnius Conference on Probability Theory and Mathematical Statistics

Город: 

  • Vilnius

Издательство: 

  • Vilnius University

Год издания: 

2018

Страницы: 

266
Аннотация
The fast finding of most influential nodes in a network graph and its declustering constitute important research problems of the analysis of Web communication, social and complex networks. PageRank \cite{Vol:10} and a Max-linear model \cite{GisKlu:15} are considered as two indices of the influence of network nodes. An extremal index of PageRank determines the first hitting time, i.e. a minimal time to reach the first influential node by means of a PageRank random walk. Following \cite{Jel:10}, \cite{Vol:10}, we consider the PageRank of a random Web page as an autoregressive process with a random number of random coefficients that depend on ranks of incoming nodes and their out-degrees, and a user preference term. The coefficients are assumed to be %independent and regularly varying distributed with different tail indices. It is proved that the tail and extremal indices are the same for both PageRank and the Max-linear model and the values of the extremal index depending on the tail indices are found \cite{Markovich}. The results are based on the study of stochastic sequences of random lengths \cite{Gold:13} and the comparison of the distributions of their maxima and linear combinations. The exposition is accompanied by some examples based on simulation and the analysis of graph data stemming from real Web graphs.

Библиографическая ссылка: 

Маркович Н.М. Extremes of stochastic sequences with application to Web graphs / Proceedings of the 12th International Vilnius Conference on Probability Theory and Mathematical Statistics. Vilnius: Vilnius University, 2018. С. 266.

38680

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

On Solution of One Equation with d.c. Function

ISBN/ISSN: 

0868-4952

DOI: 

10.15388/Informatica.2016.90

Наименование источника: 

  • Informatica

Обозначение и номер тома: 

Vol. 27, No. 2

Город: 

  • Vilnius

Издательство: 

  • Vilnius University

Год издания: 

2016

Страницы: 

367–386
Аннотация
In the paper we address the classical problem of solving one equation given by (d.c.) function represented by the difference of two convex functions. This problem is initiated by the optimization problems with constraints in the form of inequalities and/or equalities given by d.c. functions when one needs to descent from an unfeasible point to the boundary of a constraint improving, at the same time, the value of the objective function. We propose a new numerical procedure which allows to do this. Further, for the developed algorithm we provide the convergence results and numerical results of computational testing which look rather promising and competitive.

Библиографическая ссылка: 

Стрекаловский А.С., Мусатова Е.Г. On Solution of One Equation with d.c. Function // Informatica. 2016. Vol. 27, No. 2. С. 367–386.

13997

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Тезисы доклада

Название: 

A summation method and evaluation of Riemann's zeta function and related series

Наименование конференции: 

  • 27th Journées arithmétiques (Vilnius, 2011)

Наименование источника: 

  • Abstracts of the 27th Journees Arithmetiques (Vilnius, 2011)

Город: 

  • Vilnius

Издательство: 

  • Vilnius University

Год издания: 

2011

Страницы: 

4
Аннотация
The evaluation at integer arguments of the Riemann's zeta function and of some other Dirichlet series is presented. Using elementary analytic techniques and summation formulas applied to the Bernoulli polynomials formulas for sums of some divergent series of zeta functions are also derived.

Библиографическая ссылка: 

Багдасарян А.Г. A summation method and evaluation of Riemann's zeta function and related series / Abstracts of the 27th Journees Arithmetiques (Vilnius, 2011). Vilnius: Vilnius University, 2011. С. 4.