83099

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

A Method for Improving the Accuracy of Regression Models Based on Ordinal-Invariant Pattern Clustering

Электронная публикация: 

Да

ISBN/ISSN: 

1877-0509

DOI: 

10.1016/j.procs.2025.08.163

Наименование источника: 

  • Procedia Computer Science

Обозначение и номер тома: 

Vol. 266

Город: 

  • Amsterdam

Издательство: 

  • Elsevier

Год издания: 

2025

Страницы: 

1330-1335
Аннотация
An agglomerative pattern analysis algorithm is presented that groups objects using ordinal-invariant pattern clustering, with the goal of maximizing the coefficient of determination. Key stages are described: constructing initial pattern pattern by grouping objects according to permutations of feature values; computing centroids and variances; and defining a merge criterion based on the maximal increase in R2. Algorithmic details include incremental updates of cumulative statistics, enabling constant-time updates per merge. A complexity analysis shows that the basic implementation is cubic in the number of initial clusters, but filtering and priority queues can reduce the practical running time. Experimental evaluation on a synthetic dataset and on the red wine quality dataset from the UCI Machine Learning Repository compares the proposed.

Библиографическая ссылка: 

Мячин А.Л. A Method for Improving the Accuracy of Regression Models Based on Ordinal-Invariant Pattern Clustering // Procedia Computer Science. 2025. Vol. 266. С. 1330-1335.