83026

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Тезисы доклада

Название: 

Mathematical model of a nonlinear M/M/1/n queueing system

Электронная публикация: 

Да

ISBN/ISSN: 

978-5-91450-284-0

Наименование конференции: 

  • 9th International Conference on Information, Control, and Communication Technologies (ICCT 2025)

Наименование источника: 

  • Proceedings of 9th International Conference on Information, Control, and Communication Technologies (ICCT 2025)

Город: 

  • Москва

Издательство: 

  • ИПУ РАН

Год издания: 

2025

Страницы: 

148-149
Аннотация
This paper investigates a nonlinear queuing system of type M/M/1/n in which the service rate depends on the current loss probability. A system of Kolmogorov differential equations is derived and numerical experiments are conducted using the classical fourth-order Runge–Kutta method. The results show that increasing the proportionality coefficient between the loss probability and the service rate reduces losses, increases the probability of the idle state, and shortens transient processes. The proposed model reflects adaptive properties of real technical and organizational systems and can be applied to the design of resource management mechanisms with self-regulation.

Библиографическая ссылка: 

Вытовтов К.А., Новочадова А.В. Mathematical model of a nonlinear M/M/1/n queueing system / Proceedings of 9th International Conference on Information, Control, and Communication Technologies (ICCT 2025). М.: ИПУ РАН, 2025. С. 148-149.