82818

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Построение алгоритма исследования многомерных стохастических систем Лотки–Волтерры с применением метода нормальной аппроксимации

Электронная публикация: 

Да

ISBN/ISSN: 

1819-2467

Наименование источника: 

  • Управление большими системами: сборник трудов

Обозначение и номер тома: 

вып. 118

Город: 

  • Москва

Издательство: 

  • ИПУ РАН

Год издания: 

2025

Страницы: 

23-41
Аннотация
Актуальность исследования многомерных стохастических систем Лотки–Вольтерры связана с возможностями использования результатов для анализа влияния случайных возмущений на популяционную динамику в задачах экологии, а также на динамику фазовых переменных в задачах химической кинетики, физики, эпидемиологии, демографии и других областей. В статье рассмотрены стохастические модификации многомерных систем Лотки–Вольтерры, построенные с учетом случайных возмущений, относящихся к непараметрическому белому шуму. Предложен алгоритм перехода от стохастической модификации к системе обыкновенных дифференциальных уравнений относительно вероятностных моментов первого и второго порядка. Алгоритм базируется на применении рекуррентных соотношений метода нормальной аппроксимации, в рамках которого выполняется приближение неизвестных распределений нормальным распределением с учетом перехода к детерминированной системе более высокой размерности по сравнению с размерностью исходной стохастической системы. Применимость алгоритма продемонстрирована с помощью примеров исследования модели «хищник–жертва» с внутривидовой конкуренцией и модели «конкурент–конкурент–ареал миграции». Результаты могут найти применение при моделировании динамических систем с нелинейностями полиномиального типа с учетом случайных возмущений, а также при построении нелинейных стохастических фильтров.

Библиографическая ссылка: 

Дружинина О.В., Белоусов В.В. Построение алгоритма исследования многомерных стохастических систем Лотки–Волтерры с применением метода нормальной аппроксимации // Управление большими системами: сборник трудов. 2025. вып. 118. С. 23-41.