82780

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Continual Learning with Columnar Spiking Neural Networks

Электронная публикация: 

Да

ISBN/ISSN: 

1060-992X

DOI: 

10.3103/S1060992X25601629

Наименование источника: 

  • Optical Memory and Neural Networks

Обозначение и номер тома: 

Vol.34 (Suppl.1)

Город: 

  • Cham

Издательство: 

  • Springer

Год издания: 

2025

Страницы: 

S58-S71
Аннотация
Continual learning is a key feature of biological neural systems, but artificial neural networks often suffer from catastrophic forgetting. Instead of backpropagation, biologically plausible learning algorithms may enable stable continual learning. This study proposes columnar-organized spiking neural networks (SNNs) with local learning rules for continual learning and catastrophic forgetting. Using CoLaNET (Columnar Layered Network), we show that its microcolumns adapt most efficiently to new tasks when they lack shared structure with prior learning. We demonstrate how CoLaNET hyperparameters govern the trade-off between retaining old knowledge (stability) and acquiring new information (plasticity). We evaluate CoLaNET on two benchmarks: Permuted MNIST (ten sequential pixel-permuted tasks) and a two-task MNIST/EMNIST setup. Our model learns ten sequential tasks effectively, maintaining 92% accuracy on each. It shows low forgetting, with only 4% performance degradation on the first task after training on nine subsequent tasks.

Библиографическая ссылка: 

Базенков Н.И., Ларионов Д.А., Киселев М.В. Continual Learning with Columnar Spiking Neural Networks // Optical Memory and Neural Networks. 2025. Vol.34 (Suppl.1). С. S58-S71.