82528

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Доклад

Название: 

Team ap-team at PAN: LLM Adapters for Various Datasets

Электронная публикация: 

Да

ISBN/ISSN: 

1613-0073

Наименование конференции: 

  • Conference and Labs of the Evaluation Forum (CLEF 2024)

Наименование источника: 

  • Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2024)

Обозначение и номер тома: 

Т. 3740

Город: 

  • Гренобль

Издательство: 

  • CEUR-WS.org

Год издания: 

2024

Страницы: 

2527-2535
Аннотация
The recent breakthrough in text generation ensures that the quality level of generation increases with each new model. On the other hand, the task associated with the use of generated text is relevant. Spreading false information, spamming, generating scientific articles and texts are all problems that have arisen from this outburst. Binary text classification methods have been proposed to control the situation. This research provides an approach based on aggregating QLoRA adapters which are trained for multiple distributions of generative model families. Our method LAVA (LLM Adapters for Various dAtasets) demonstrates comparable results with the primary baseline provided by the PAN organizers. The proposed method provides an efficient and fast detector with high performance of the target metrics, in view of the possibility of parallel training of adapters for the language models. It makes detecting process straightforward and flexible to tailor the adapter to appearing distributions and add it to an existing approach. Furthermore, each learns dependencies separately from the others, after which the outputs are aggregated.

Библиографическая ссылка: 

Боева Г.Л., Грицай Г.М., Грабовой А.В. Team ap-team at PAN: LLM Adapters for Various Datasets / Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2024). Гренобль: CEUR-WS.org, 2024. Т. 3740. С. 2527-2535.