Работа посвящена оптимизации структуры нейронной сети. Предполагается, что число параметров нейросети можно существенно снизить без значимой потери качества и значимого повышения дисперсии функции ошибки. Предлагается метод прореживания параметров нейронной сети, основанный на автоматическом определении релевантности параметров. Для определения релевантности параметров предлагается проанализировать ковариационную матрицу апостериорного распределения параметров и удалить из нейросети мультикоррелирующие параметры. Для определения мультикорреляции используется метод Белсли. Для анализа качества представленного алгоритма проводятся эксперименты на выборке Boston Housing, а также на синтетических данных.