82507

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Quasi-Periodic Time Series Clustering for Human Activity Recognition

ISBN/ISSN: 

1995-0802

DOI: 

10.1134/s1995080220030075

Наименование источника: 

  • Lobachevskii Journal of Mathematics

Обозначение и номер тома: 

Т. 41, № 3

Город: 

  • Казань

Издательство: 

  • Казанский федеральный университет

Год издания: 

2020

Страницы: 

333–339
Аннотация
This paper analyses the periodic signals in the time series to recognize human activity by using a mobile accelerometer. Each point in the timeline corresponds to a segment of historical time series. This segments form a phase trajectory in phase space of human activity. The principal components of segments of the phase trajectory are treated as feature descriptions at the point in the timeline. The paper introduces a new distance function between the points in new feature space. To reval changes of types of the human activity the paper proposes an algorithm. This algorithm clusters points of the timeline by using a pairwise distances matrix. The algorithm was tested on synthetic and real data. This real data were obtained from a mobile accelerometer.

Библиографическая ссылка: 

Грабовой А.В., Стрижов В.В. Quasi-Periodic Time Series Clustering for Human Activity Recognition // Lobachevskii Journal of Mathematics. 2020. Т. 41, № 3. С. 333–339.