82421

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Доклад

Название: 

A First-Order Quasilinear Equation with Everywhere Dense Solution

ISBN/ISSN: 

979-8-3503-7572-5

DOI: 

10.1109/MLSD65526.2025.11220660

Наименование конференции: 

  • 2025 18th International Conference Management of Large-Scale System Development (MLSD)

Наименование источника: 

  • Proceedings of 18th International Conference on Management of Large-Scale System Development (MLSD)

Город: 

  • Москва

Издательство: 

  • IEEE Explore Digital Library

Год издания: 

2025

Страницы: 

11220660 (1-5) https://ieeexplore.ieee.org/document/11220660
Аннотация
The work concerns nondegenerate first-order quasilinear partial differential equations with one unknown function and two independent variables. An example of such an equation that has an everywhere dense multivalued solution is constructed. This construction is an explicit and constructive one. Namely, all the coefficients of the equation are explicit combinations of standard algebraic functions in a domain of the three-dimensional Euclidean space (one dependent and two independent variables). Furthermore, all the terms of the multivalued solution are also explicit combinations of standard algebraic and trigonometric functions.

Библиографическая ссылка: 

Туницкий Д.В. A First-Order Quasilinear Equation with Everywhere Dense Solution / Proceedings of 18th International Conference on Management of Large-Scale System Development (MLSD). М.: IEEE Explore Digital Library, 2025. С. 11220660 (1-5) https://ieeexplore.ieee.org/document/11220660.