82404

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Bayesian Distillation of Deep Learning Models

ISBN/ISSN: 

0005-1179

DOI: 

10.1134/S0005117921110023

Наименование источника: 

  • Automation and remote control

Обозначение и номер тома: 

Т. 82, № 11

Город: 

  • New-York

Издательство: 

  • Pleiades Publishing Ltd

Год издания: 

2021

Страницы: 

1846-1856
Аннотация
We study the problem of reducing the complexity of approximating models and consider methods based on distillation of deep learning models. The concepts of trainer and student are introduced. It is assumed that the student model has fewer parameters than the trainer model. A Bayesian approach to the student model selection is suggested. A method is proposed for assigning an a priori distribution of student parameters based on the a posteriori distribution of trainer model parameters. Since the trainer and student parameter spaces do not coincide, we propose a mechanism for the reduction of the trainer model parameter space to the student model parameter space by changing the trainer model structure. A theoretical analysis of the proposed reduction mechanism is carried out. A computational experiment was carried out on synthesized and real data. The FashionMNIST sample was used as real data.

Библиографическая ссылка: 

Грабовой А.В., Стрижов В.В. Bayesian Distillation of Deep Learning Models // Automation and remote control. 2021. Т. 82, № 11. С. 1846-1856.

Публикация имеет версию на другом языке или вышла в другом издании, например, в электронной (или онлайн) версии журнала: 

Да

Связь с публикацией: