82297

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Доклад

Название: 

Parametric and nonparametric ways to solving classification problems in the era of computer progress, choice of neural network structure in the case of nonreproducibility of learning

Электронная публикация: 

Да

DOI: 

10.1109/MLSD65526.2025.11220706

Наименование конференции: 

  • 2025 18th International Conference on Management of Large-Scale System Development (MLSD)

Наименование источника: 

  • Proceedings of 18th International Conference on Management of Large-Scale System Development (MLSD)

Город: 

  • Moscow

Издательство: 

  • IEEE

Год издания: 

2025

Страницы: 

https://ieeexplore.ieee.org/document/11220706
Аннотация
Abstract—Progress in computing technology allows using simpler, nonparametric models compared to parametric ones due to the use of a training sample not only during the training period, but also when using the trained model later. The statement is demonstrated by comparing the neural network method for solving the classification problem and the Anderson discriminant function approximation method. It is proposed to select the neural network structure taking into account the range of errors in the irreproducibility of the neural network training results.

Библиографическая ссылка: 

Зенков В.В. Parametric and nonparametric ways to solving classification problems in the era of computer progress, choice of neural network structure in the case of nonreproducibility of learning / Proceedings of 18th International Conference on Management of Large-Scale System Development (MLSD). Moscow: IEEE, 2025. С. https://ieeexplore.ieee.org/document/11220706.