82236

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Lax representations and variational Poisson structures for magnetohydrodynamics equations

ISBN/ISSN: 

Electronic ISSN 1664-235X, Print ISSN 1664-2368

DOI: 

doi.org/10.1007/s13324-025-01119-w

Наименование источника: 

  • Analysis and Mathematical Physics

Обозначение и номер тома: 

Vol.15, article number 120

Город: 

  • Berlin

Издательство: 

  • Springer

Год издания: 

2025

Страницы: 

article number 120 https://link.springer.com/article/10.1007/s13324-025-01119-w
Аннотация
We find two Lax representations for the reduced magnetohydrodynamics equations ({\sc rmhd}) and construct a local variational Poisson structure (a Hamiltonian operator) for them. Its inverse defines a nonlocal symplectic structure for the same equations. We describe the action of both operators on the second-order cosymmetries and on the infinitesimal contact symmetries of {\sc rmhd}, respectively. The reduction of {\sc rmhd} by the symmetry of shifts along the $z$-axis coincides with the equations of two-dimensional ideal magnetohydrodynamics ({\sc imhd}). Applied to the Lax representations and the variational Poisson structure of {\sc rmhd}, the reduction provides analogous constructions for {\sc imhd}.

Библиографическая ссылка: 

Морозов О.И. Lax representations and variational Poisson structures for magnetohydrodynamics equations // Analysis and Mathematical Physics. 2025. Vol.15, article number 120. С. article number 120 https://link.springer.com/article/10.1007/s13324-025-01119-w.