81559

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Limit Cycle Generation in Van der Pol Flavored PDE Setting

ISBN/ISSN: 

2475-1456

DOI: 

10.1109/LCSYS.2023.3339244

Наименование источника: 

  • IEEE Control Systems Letters

Обозначение и номер тома: 

Vol.7

Город: 

  • Padova, Italy

Издательство: 

  • IEEE

Год издания: 

2023

Страницы: 

3603-3608
Аннотация
The nonlinear Van der Pol oscillator is wellrecognized for modeling limit cycles in electrical circuits. It was recently modified to a model whose parameters explicitly stood for the limit cycle amplitude and frequency. Due to this, the latter model has successfully been used in control engineering as a reference model for self-generation of limit cycles in the closed-loop. The popular Lotka-Volterra predator-prey partial differential equation (PDE) is another model which is capable of self-generating periodic orbits in infinite-dimensional setting. The present work aims to flavor the Van der Pol equation in PDE setting. It is shown that similar to the modified Van der Pol oscillator, its PDE-flavored model explicitly relies on the amplitude and frequency of the periodic orbit, which is self-generated by the model while also possessing a unique equilibrium in the origin similar to that of its finite-dimensional progenitor. Theoretical analysis is additionally supported by simulation results.

Библиографическая ссылка: 

Aguilar L.B., Орлов Ю.В. Limit Cycle Generation in Van der Pol Flavored PDE Setting // IEEE Control Systems Letters. 2023. Vol.7. С. 3603-3608.