Работа посвящена математическим аспектам создания современной охранной системы. Разработан метод численного решения задачи оптимизации расстановки обнаружителей с целью противодействия прорыву защищаемого периметра. Защищаемый периметр представляет собой отрезок на плоскости, который пытается за заданное время пересечь уклоняющийся от обнаружения подвижный объект. Данный объект рассматривается как материальная точка, управляемая с целью минимизации функционала риска обнаружения по первичному гидроакустическому полю. За-дача формализуется как задача максимина, обнаружители следует расставить в допустимой области таким образом, чтобы минимально возможное значение функционала подвижного объекта было наибольшим. Для решения авторами был разработан программный комплекс на языке C++. В работе приводятся результаты численного моделирования, полученные с использованием градиентного метода и решения краевой за-дачи принципа максимума Л.С. Понтрягина для нахождения локально оптимальных траекторий во вспомогательной задаче поиска пути подвижным объектом. Краевая за-дача решалась методом стрельбы, соответствующие задачи Коши изначально формировались заданием значений параметров пристрелки на сетке в пространстве их возможных значений, и интегрировались численно методом Рунге–Кутты с автоматическим выбором шага. Далее значения параметров пристрелки уточнялись модифицированным методом Ньютона. В результате численного моделирования расстановки пяти сенсоров оказалось, что выгоднее всего расставлять их таким образом, чтобы первые шесть лучших локально оптимальных траекторий уклоняющегося объекта совпадали по функционалу.