81001

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

On the Generalized Inverse Gaussian Volatility in the Continuous Ho–Lee Model

ISBN/ISSN: 

2079-3197

DOI: 

10.3390/computation13040100

Наименование источника: 

  • Computation

Обозначение и номер тома: 

Т. 13, № 4

Город: 

  • Basel

Издательство: 

  • MDPI

Год издания: 

2025

Страницы: 

https://www.mdpi.com/2079-3197/13/4/100
Аннотация
This paper presents a new model of the term structure of interest rates that is based on the continuous Ho–Lee one. In this model, we suggest that the drift and volatility coefficients depend additionally on a generalized inverse Gaussian (GIG) distribution. Analytical expressions for the bond price and its moments are found in the new GIG continuous Ho–Lee model. Also, we compute in this model the prices of European call and put options written on bond. The obtained formulas are determined by the values of the Humbert confluent hypergeometric function of two variables. A numerical experiment shows that the third and fourth moments of the bond prices differentiate substantially in the continuous Ho–Lee and GIG continuous Ho–Lee models.

Библиографическая ссылка: 

Иванов Р.В. On the Generalized Inverse Gaussian Volatility in the Continuous Ho–Lee Model // Computation. 2025. Т. 13, № 4. С. https://www.mdpi.com/2079-3197/13/4/100.