80126

Автор(ы): 

Автор(ов): 

4

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Coherent domains and improved lower bounds for the maximum size of Condorcet domains

ISBN/ISSN: 

0166-218X

DOI: 

https://doi.org/10.1016/j.dam.2025.03.007 Get rights and content

Наименование источника: 

  • Discrete Applied Mathematics

Обозначение и номер тома: 

Vol. 370

Город: 

  • Амстердам

Издательство: 

  • Elsevier

Год издания: 

2025

Страницы: 

57-70
Аннотация
In this paper, we study Condorcet domains, sets of linear orders from which majority ranking produces a linear order. We introduce a new class of Condorcet domains, called coherent domains, which is natural from both a voting theoretic and combinatorial perspective. After studying the properties of these domains we introduce set-alternating schemes. This is a method for constructing well-behaved coherent domains. Using this we show that, for sufficiently large numbers of alternatives n, there are coherent domains of size more than 2.1973^n. This improves the best existing asymptotic lower bounds for the size of the largest general Condorcet domains.

Библиографическая ссылка: 

Карпов А.В., Маркстрём К., Риис С., Жу Б. Coherent domains and improved lower bounds for the maximum size of Condorcet domains // Discrete Applied Mathematics. 2025. Vol. 370. С. 57-70 .