80002

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Extensions of the symmetry algebra and Lax representations for the two-dimensional Euler equation

ISBN/ISSN: 

0393-0440

DOI: 

10.1016/j.geomphys.2024.105233

Наименование источника: 

  • Journal of Geometry and Physics

Обозначение и номер тома: 

Vol. 202

Город: 

  • Amsterdam

Издательство: 

  • Elsevier B.V.

Год издания: 

2024

Страницы: 

105233 (1-10) https://www.sciencedirect.com/science/article/abs/pii/S0393044024001347
Аннотация
We find the twisted extensions of the symmetry algebra of the 2D Euler equation in the vorticity form and use them to construct new Lax representation for this equation. Then we generalize this result by considering the transformation Lie--Rinehart algebras generated by finite-dimensional subalgebras of the symmetry algebra and derive a family of Lax representations for the Euler equation. The family depends on functional parameters and contains a non-removable spectral parameter.

Библиографическая ссылка: 

Морозов О.И. Extensions of the symmetry algebra and Lax representations for the two-dimensional Euler equation // Journal of Geometry and Physics. 2024. Vol. 202. С. 105233 (1-10) https://www.sciencedirect.com/science/article/abs/pii/S0393044024001347.