79739

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Machine Learning in Recognition of Native and Artificially Generated EEGs

Электронная публикация: 

Да

ISBN/ISSN: 

1064-2269

DOI: 

10.1134/S1064226924700359

Наименование источника: 

  • Journal of Communications Technology and Electronics

Обозначение и номер тома: 

Vol. 24, No. 3

Город: 

  • Moscow

Издательство: 

  • Springer

Год издания: 

2025

Страницы: 

190–202
Аннотация
A comprehensive approach to the analysis of electroencephalographic (EEG) signals obtained from human brain and artificially synthesized using machine learning methods is presented. The main focus is on data preprocessing, including signal normalization and filtering, as well as application of various feature extraction methods, in particular, Fast Fourier Transform and Mel-Frequency Cepstral Coefficients. A comparative analysis of classification accuracy using logistic regression, random forest, gradient boosting, and recurrent neural network LSTM is performed. Special attention is given to the effect of filtering parameters on classification accuracy. The results show that filtering and proper tuning of model parameters significantly improve the accuracy of EEG signal classification, ensuring separation of real and synthetic EEG pools. The results and discussion may serve as a basis for further research in the field of biomedical signal analysis and processing.

Библиографическая ссылка: 

Русаков К.Д., Туровский Я.А., Киселев Е.А. Machine Learning in Recognition of Native and Artificially Generated EEGs // Journal of Communications Technology and Electronics. 2025. Vol. 24, No. 3. С. 190–202.

Публикация имеет версию на другом языке или вышла в другом издании, например, в электронной (или онлайн) версии журнала: 

Да

Связь с публикацией: