79561

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

WEIGHTED MAXIMA AND SUMS OF NON-STATIONARY RANDOM LENGTH SEQUENCES IN HEAVY-TAILED MODELS

ISBN/ISSN: 

0021-9002 (Print), 1475-6072 (Online)

DOI: 

10.1017/jpr.2024.118

Наименование источника: 

  • Journal of Applied Probability

Обозначение и номер тома: 

62

Город: 

  • Cambridge

Издательство: 

  • Cambridge University Press

Год издания: 

2025

Страницы: 

1173-1192
Аннотация
Considering a double-indexed array $(Y_{n,i: n\ge 1, i\ge 1})$ of non-negative regularly varying random variables, the paper studies the random-length weighted sums and maxima from its "row" sequences. These sums and maxima may have the same tail and extremal indices, \cite{MarkRod2020}. The main constraints of the latter results are that there exists a unique series in a scheme of series with the minimum tail index and the tail of the term number is lighter than the tail of the terms. % and the weights are positive constants. Here a bounded random number of series is allowed to have the minimum tail index and the tail of the term number may be heavier than the tail of the terms. We derive the tail and extremal indices of the weighted non-stationary random length sequences under a broader set of conditions than in \cite{MarkRod2020}. We provide examples of random sequences for which the assumptions are valid. The perspective in adopting the results in different application areas are formulated.

Библиографическая ссылка: 

Маркович Н.М. WEIGHTED MAXIMA AND SUMS OF NON-STATIONARY RANDOM LENGTH SEQUENCES IN HEAVY-TAILED MODELS // Journal of Applied Probability. 2025. 62. С. 1173-1192.