79425

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Доклад

Название: 

Optimal Selection of Feedback Coefficients in the Problem of Stabilizing a Chain of Three Integrators

ISBN/ISSN: 

0302-9743

DOI: 

10.1007/978-3-031-79119-2_11

Наименование конференции: 

  • XV International Conference Optimization and Applications (OPTIMA-2024, Petrovaс, Montenegro)

Наименование источника: 

  • Lecture Notes in Computer Science

Город: 

  • Charm

Издательство: 

  • Springer

Год издания: 

2025

Страницы: 

15218 (1-14)
Аннотация
This work continues our studies reported in the proceedings of the Optima conference in 2022 and 2023 [1, 2], where the problem of stabilizing a chain of three integrators by a piecewise continuous control in the form of nested saturators was discussed. In this work, we propose a AQ1 more advanced stabilizing control law. The new feedback control is con- tinuous and guarantees the fulfillment of a phase constraint imposed on the third state variable. We study global stability of the closed-loop sys- tem and set an optimization problem of determining feedback coefficients that ensure the greatest convergence rate near the equilibrium while pre- serving global asymptotic stability of the system. It is established that AQ2 the loss of global stability results from arising a hidden attractor, which comes to existence when the convergence rate reaches a critical value. A numerical procedure for constructing hidden attractors is developed, and the discussion is illustrated by numerical examples.

Библиографическая ссылка: 

Пестерев А.В., Морозов Ю.В. Optimal Selection of Feedback Coefficients in the Problem of Stabilizing a Chain of Three Integrators / Lecture Notes in Computer Science. Charm: Springer, 2025. С. 15218 (1-14).