78584

Автор(ы): 

Автор(ов): 

3

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

State-Space Solution to Spectral Entropy Analysis and Optimal State-Feedback Control for Continuous-Time Linear Systems

Электронная публикация: 

Да

ISBN/ISSN: 

2227-7390

DOI: 

10.3390/math12223604

Наименование источника: 

  • Mathematics

Обозначение и номер тома: 

Vol. 12, Iss. 22

Город: 

  • St. Alban-Anlage 66 4052 Basel, Switzerland

Издательство: 

  • MDPI

Год издания: 

2024

Страницы: 

3604 (https://www.mdpi.com/2227-7390/12/22/3604
Аннотация
In this paper, a problem of random disturbance attenuation capabilities for linear time-invariant continuous systems, affected by random disturbances with bounded 𝜎-entropy, is studied. The 𝜎-entropy norm defines a performance index of the system on the set of the aforementioned input signals. Two problems are considered. The first is a state-space 𝜎-entropy analysis of linear systems, and the second is an optimal control design using the 𝜎-entropy norm as an optimization objective. The state-space solution to the 𝜎-entropy analysis problem is derived from the representation of the 𝜎-entropy norm in the frequency domain. The formulae of the 𝜎-entropy norm computation in the state space are presented in the form of coupled matrix equations: one algebraic Riccati equation, one nonlinear equation over log determinant function, and two Lyapunov equations. Optimal control law is obtained using game theory and a saddle-point condition of optimality. The optimal state-feedback control, which minimizes the 𝜎-entropy norm of the closed-loop system, is found from the solution of two algebraic Riccati equations, one Lyapunov equation, and the log determinant equation.

Библиографическая ссылка: 

Бойченко В.А., Белов А.А., Андрианова О.Г. State-Space Solution to Spectral Entropy Analysis and Optimal State-Feedback Control for Continuous-Time Linear Systems // Mathematics. 2024. Vol. 12, Iss. 22. С. 3604 (https://www.mdpi.com/2227-7390/12/22/3604.