78442

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Доклад

Название: 

Aortography Keypoint Tracking Using Recurrent and Convolutional Neural Networks

Электронная публикация: 

Да

ISBN/ISSN: 

979-8-3503-7572-5

DOI: 

10.1109/MLSD61779.2024.10739423

Наименование конференции: 

  • 2024 17th International Conference Management of large-scale system development (MLSD)

Наименование источника: 

  • Proceedings of the 17th International Conference Management of Large-Scale System Development (MLSD)

Город: 

  • Moscow

Издательство: 

  • IEEE

Год издания: 

2024

Страницы: 

https://ieeexplore.ieee.org/document/10739423
Аннотация
A method for tracking key points in aortography using a hybrid model of convolutional and recurrent neural networks is proposed, achieving a classification accuracy of 98% and an average regression error of 4%. This improves the positioning of the aortic valve in the TAVI procedure.

Библиографическая ссылка: 

Русаков К.Д., Гергет О.М. Aortography Keypoint Tracking Using Recurrent and Convolutional Neural Networks / Proceedings of the 17th International Conference Management of Large-Scale System Development (MLSD). Moscow: IEEE, 2024. С. https://ieeexplore.ieee.org/document/10739423.