78333

Автор(ы): 

Автор(ов): 

4

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

A New Spectral Measure of Complexity and Its Capabilities for Detecting Signals in Noise

ISBN/ISSN: 

1064-5624

DOI: 

10.1134/S1064562424702235

Наименование источника: 

  • Doklady Mathematics

Город: 

  • Москва

Издательство: 

  • Pleiades Publishing, Ltd.

Год издания: 

2024

Страницы: 

1-8 https://link.springer.com/article/10.1134/S1064562424702235#citeas
Аннотация
This article is devoted to the improvement of signal recognition methods based on information characteristics of the spectrum. A discrete function of the normalized ordered spectrum is established for a single window function included in the discrete Fourier transform. Lemmas on estimates of entropy, imbalance, and statistical complexity in processing a time series of independent Gaussian variables are proved. New concepts of one- and two-dimensional spectral complexities are proposed. The theoretical results were verified by numerical experiments, which confirmed the effectiveness of the new information characteristic for detecting a signal mixed with white noise at low signal-to-noise ratios.

Библиографическая ссылка: 

Галяев А.А., Бабиков В.Г., Лысенко П.В., Берлин Л.М. A New Spectral Measure of Complexity and Its Capabilities for Detecting Signals in Noise / Doklady Mathematics. М.: Pleiades Publishing, Ltd., 2024. С. 1-8 https://link.springer.com/article/10.1134/S1064562424702235#citeas.

Публикация имеет версию на другом языке или вышла в другом издании, например, в электронной (или онлайн) версии журнала: 

Да

Связь с публикацией: