77973

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Symplectic geometry of the oil displacement Barenblatt equations

ISBN/ISSN: 

Online ISSN: 1879-1662, Print ISSN: 0393-0440

DOI: 

10.1016/j.geomphys.2024.105277

Наименование источника: 

  • Journal of Geometry and Physics

Обозначение и номер тома: 

Vol. 204

Город: 

  • Амстердам

Издательство: 

  • Elsevier

Год издания: 

2024

Страницы: 

105277 (1-9) https://www.sciencedirect.com/science/article/pii/S0393044024001785?via%3Dihub
Аннотация
The paper is devoted to the Barenblatt model of oil and water filtration with an admixture of active reagents. This model is used in oil production for hard-to-recover deposits by chemical flooding. The model is described by a system of two first order nonlinear partial differential equations. Conditions for the Buckley–Leverett function, under which the system is reduced to a linear one using symplectic transformations, are found. This makes possible to find classes of exact general solutions of the Barenblatt system and to solve the Cauchy problem.

Библиографическая ссылка: 

Мухина С.С. Symplectic geometry of the oil displacement Barenblatt equations // Journal of Geometry and Physics. 2024. Vol. 204. С. 105277 (1-9) https://www.sciencedirect.com/science/article/pii/S0393044024001785?via%3Dihub.