76644

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Combined Hierarchical Crossover in a Genetic Algorithm for Last-Mile Delivery: Efficiency Analysis

ISBN/ISSN: 

2782-2427

DOI: 

10.25728/cs.2024.1.3

Наименование источника: 

  • Control Sciences

Обозначение и номер тома: 

No. 1

Город: 

  • Moscow

Издательство: 

  • Trapeznikov Institute of Control Sciences RAS

Год издания: 

2024

Страницы: 

18-27
Аннотация
This paper considers routing for a group of unmanned aerial vehicles within a promising last-mile delivery system. The routing problem is reduced to the bi-criteria single-depot multiple traveling salesman problem and formalized using a directed graph. Being NP-hard, this problem cannot be efficiently solved by standard exact optimization methods. Therefore, heuristic algorithms should be applied to obtain good approximate solutions in a short time. The problem is solved using NSGA-II, the widespread elitist non-dominated sorting genetic algorithm that demonstrates good results in multicriteria optimization. Some chromosome representation and crossing and mutation operators are implemented in the algorithm. A simulation software tool is presented to investigate the influence of the crossing operators used on the convergence speed of the algorithm. Finally, several genetic crossing operators (Partially-Mapped Crossover, Order Crossover, Cycle Crossover, and Combined Hierarchical Crossover) are compared in terms of efficiency.

Библиографическая ссылка: 

Соседов В.А. Combined Hierarchical Crossover in a Genetic Algorithm for Last-Mile Delivery: Efficiency Analysis // Control Sciences. 2024. No. 1. С. 18-27.