76638

Автор(ы): 

Автор(ов): 

2

Параметры публикации

Тип публикации: 

Доклад

Название: 

Predicting of a person's position in trajectory tracking from a continuous video stream

Электронная публикация: 

Да

ISBN/ISSN: 

25550403

DOI: 

10.1051/e3sconf/202447402022

Наименование конференции: 

  • 10th International Annual Conference “Industrial Technologies and Engineering” (ICITE 2023)

Наименование источника: 

  • E3S Web of Conferences

Обозначение и номер тома: 

T. 474, 020022

Город: 

  • Shymkent

Издательство: 

  • EDP Sciences

Год издания: 

2024

Страницы: 

http://surl.li/ryopq
Аннотация
The paper proposes a method for predicting when a person enters a forbidden zone during his trajectory following a video stream, considering individual body parts. The authors used the PP-TinyPose PaddleHub neural network model with its implementation based on two deep neural networks to detect key points of the human body. The paper considers an example of human position prediction from a continuous video stream in indoor trajectory tracking. The authors predicted each key point in the coordinate space of the video stream using a recurrent deep neural network algorithm.

Библиографическая ссылка: 

Амосов О.С., Амосова С.Г. Predicting of a person's position in trajectory tracking from a continuous video stream / E3S Web of Conferences. Shymkent: EDP Sciences, 2024. T. 474, 020022. С. http://surl.li/ryopq.