76509

Автор(ы): 

Автор(ов): 

1

Параметры публикации

Тип публикации: 

Тезисы доклада

Название: 

Extensions of Lie algebras and integrability of some equations of fluid dynamics and magnetohydrodynamics

Наименование конференции: 

  • International Conference «Advances in Applications of Analytical Methods for Solving Differential Equations» (Symmetry 2024)

Наименование источника: 

  • Book of abstracts of International conference «Advances in applications of analytical methods for solving differential equations» (Symmetry 2024)

Город: 

  • Nakhon Ratchasima, Thailand

Издательство: 

  • Suranaree University of Technology

Год издания: 

2024

Страницы: 

46-46
Аннотация
We find the twisted extension of the symmetry algebra of the 2D Euler equation in the vorticity form and use it to construct new Lax representation for this equation. Then we consider the transformation Lie-Rinehart algebras generated by finite-dimensional subalgebras of the symmetry algebra and employ them to derive a family of Lax representations for the Euler equation. The family depends on functional parameters and contains a non-removable spectral parameter. Furthermore we exhibit Lax representations for the reduced magnetohydrodynamics equations (or the Kadomtsev-Pogutse equations), the ideal magnetohydrodynamics equations, and the quasigeostrophic two-layer model equations.

Библиографическая ссылка: 

Морозов О.И. Extensions of Lie algebras and integrability of some equations of fluid dynamics and magnetohydrodynamics / Book of abstracts of International conference «Advances in applications of analytical methods for solving differential equations» (Symmetry 2024). Nakhon Ratchasima, Thailand: Suranaree University of Technology, 2024. С. 46-46.