75865

Автор(ы): 

Автор(ов): 

4

Параметры публикации

Тип публикации: 

Статья в журнале/сборнике

Название: 

Hierarchical cyclic pursuit: Algebraic curves containing the Laplacian spectra

ISBN/ISSN: 

2325-5870

DOI: 

10.1109/TCNS.2023.3237495

Наименование источника: 

  • IEEE Transactions on Control of Network Systems

Обозначение и номер тома: 

Vol. 10, no. 4

Город: 

  • New York, USA

Издательство: 

  • IEEE

Год издания: 

2023

Страницы: 

1720--1731
Аннотация
This article addresses the problem of multiagent communication in networks with a regular directed ring structure. These can be viewed as hierarchical extensions of the classical cyclic pursuit topology. We show that the spectra of the corresponding Laplacian matrices allow exact localization on the complex plane. Furthermore, we derive a general form of the characteristic polynomial of such matrices, analyze the algebraic curves its roots belong to, and propose a way to obtain their closed-form equations. In combination with frequency-domain consensus criteria for high-order single-input single-output linear agents, these curves enable one to analyze the feasibility of consensus in networks with a varying number of agents.

Библиографическая ссылка: 

Парсегов С.Э., Чеботарев П.Ю., Щербаков П.С., Ibanez F.M. Hierarchical cyclic pursuit: Algebraic curves containing the Laplacian spectra // IEEE Transactions on Control of Network Systems. 2023. Vol. 10, no. 4. С. 1720--1731.