75864

Автор(ы): 

Автор(ов): 

4

Параметры публикации

Тип публикации: 

Доклад

Название: 

Distributed State Estimation for Multi-Area Data Reconciliation

Электронная публикация: 

Да

ISBN/ISSN: 

979-8-3503-1543-1

DOI: 

10.1109/MED59994.2023.10185911

Наименование конференции: 

  • 2023 31st Mediterranean Conference on Control and Automation (MED)

Наименование источника: 

  • Proceedings of 31st Mediterranean Conference on Control and Automation (MED)

Город: 

  • Limassol, Cyprus

Издательство: 

  • IEEE

Год издания: 

2023

Страницы: 

954-959 https://ieeexplore.ieee.org/document/10185911
Аннотация
Data reconciliation is an essential tool in data process. In addition, if there are different owners in the processing in various industries. It helps to improve accuracy of decision-making algorithms by reducing the influence of random errors in measurements. In this paper, we consider large-scale data reconciliation problems in which multiple areas communicate over a network to obtain an optimal solution of the centralized problem. Our proposed approach accounts for decomposes the optimization problem, but can also lead to the boundaries between different areas avoiding a mismatch and sub-optimality as well as reduces computational and communication complexities. The proposed distributed data reconciliation method is compared to a centralized reference in different scenarios.

Библиографическая ссылка: 

Ерофеева В.А., Парсегов С.Э., Осиненко П.В., Камал Ш.. Distributed State Estimation for Multi-Area Data Reconciliation / Proceedings of 31st Mediterranean Conference on Control and Automation (MED). Limassol, Cyprus: IEEE, 2023. С. 954-959 https://ieeexplore.ieee.org/document/10185911.